初中数学

四边形 ABCD 为矩形, E AB 延长线上的一点.

(1)若 AC = EC ,如图1,求证:四边形 BECD 为平行四边形;

(2)若 AB = AD ,点 F AB 上的点, AF = BE EG AC 于点 G ,如图2,求证: ΔDGF 是等腰直角三角形.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

问题背景:如图1,等腰 ΔABC 中, AB = AC BAC = 120 ° ,作 AD BC 于点 D ,则 D BC 的中点, BAD = 1 2 BAC = 60 ° ,于是 BC AB = 2 BD AB = 3

迁移应用:如图2, ΔABC ΔADE 都是等腰三角形, BAC = DAE = 120 ° D E C 三点在同一条直线上,连接 BD

①求证: ΔADB ΔAEC

②请直接写出线段 AD BD CD 之间的等量关系式;

拓展延伸:如图3,在菱形 ABCD 中, ABC = 120 ° ,在 ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE CF

①证明 ΔCEF 是等边三角形;

②若 AE = 5 CE = 2 ,求 BF 的长.

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知:如图, E F ABCD 对角线 AC 上的两点,且 AE = CF ,连接 BE DF ,求证: BE = DF

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,连接 BD E DA 延长线上的点, F BC 延长线上的点,且 AE = CF ,连接 EF BD 于点 O .求证: OB = OD

来源:2018年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图, AB / / CD AB = CD CE = BF .请写出 DF AE 的数量关系,并证明你的结论.

来源:2018年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC BAC = 120 ° ,以 CA 为边在 ACB 的另一侧作 ACM = ACB ,点 D 为射线 BC 上任意一点,在射线 CM 上截取 CE = BD ,连接 AD DE AE

(1)如图1,当点 D 落在线段 BC 的延长线上时,直接写出 ADE 的度数;

(2)如图2,当点 D 落在线段 BC (不含边界)上时, AC DE 交于点 F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;

(3)在(2)的条件下,若 AB = 6 ,求 CF 的最大值.

来源:2018年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

数学课上,张老师举了下面的例题:

1 等腰三角形 ABC 中, A = 110 ° ,求 B 的度数.(答案: 35 ° )

2 等腰三角形 ABC 中, A = 40 ° ,求 B 的度数,(答案: 40 ° 70 ° 100 ° )

张老师启发同学们进行变式,小敏编了如下一题:

变式 等腰三角形 ABC 中, A = 80 ° ,求 B 的度数.

(1)请你解答以上的变式题.

(2)解(1)后,小敏发现, A 的度数不同,得到 B 的度数的个数也可能不同,如果在等腰三角形 ABC 中,设 A = x ° ,当 B 有三个不同的度数时,请你探索 x 的取值范围.

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,点 P O 上一点,连接 OP ,点 A 关于 OP 的对称点 C 恰好落在 O 上.

(1)求证: OP / / BC

(2)过点 C O 的切线 CD ,交 AP 的延长线于点 D .如果 D = 90 ° DP = 1 ,求 O 的直径.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AC 是对角线, BE AC DF AC ,垂足分别为点 E F ,求证: AE = CF

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形,延长 AD 至点 E ,使 DE = AD ,连接 BD

(1)求证:四边形 BCED 是平行四边形;

(2)若 DA = DB = 2 cos A = 1 4 ,求点 B 到点 E 的距离.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,过点 A O 的切线 AC ,点 P 是射线 AC 上的动点,连接 OP ,过点 B BD / / OP ,交 O 于点 D ,连接 PD

(1)求证: PD O 的切线;

(2)当四边形 POBD 是平行四边形时,求 APO 的度数.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = BC D AB 边上一点(点 D A B 不重合),连接 CD ,将线段 CD 绕点 C 按逆时针方向旋转 90 ° 得到线段 CE ,连接 DE BC 于点 F ,连接 BE

(1)求证: ΔACD ΔBCE

(2)当 AD = BF 时,求 BEF 的度数.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,以 BC 为直径的半圆 O AB 于点 D ,过点 D 作半圆 O 的切线,交 AC 于点 E

(1)求证: ACB = 2 ADE

(2)若 DE = 3 AE = 3 ,求 CD ^ 的长.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知: 在 ΔABC 中, AB = AC D AC 的中点, DE AB DF BC ,垂足分别为点 E F ,且 DE = DF . 求证: ΔABC 是等边三角形 .

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学三角形解答题