课本再现
(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 相等的角是 ;
类比迁移
(2)如图2,在四边形 中, 与 互余,小明发现四边形 中这对互余的角可类比(1)中思路进行拼合:先作 ,再过点 作 于点 ,连接 ,发现 , , 之间的数量关系是 ;
方法运用
(3)如图3,在四边形 中,连接 , ,点 是 两边垂直平分线的交点,连接 , .
①求证: ;
②连接 ,如图4,已知 , , ,求 的长(用含 , 的式子表示).
如图,在菱形 中, 是锐角, 是 边上的动点,将射线 绕点 按逆时针方向旋转,交直线 于点 .
(1)当 , 时,
①求证: ;
②连结 , ,若 ,求 的值;
(2)当 时,延长 交射线 于点 ,延长 交射线 于点 ,连结 , ,若 , ,则当 为何值时, 是等腰三角形.
小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形 绕点 顺时针旋转 ,得到矩形 ,连结 .
探究 如图1,当 时,点 恰好在 延长线上.若 ,求 的长.
探究 如图2,连结 ,过点 作 交 于点 .线段 与 相等吗?请说明理由.
探究 在探究2的条件下,射线 分别交 , 于点 , (如图 ,发现线段 , , 存在一定的数量关系,请写出这个关系式,并加以证明.
如图,矩形 中, ,点 是边 的中点,点 是对角线 上一动点, .连结 ,作点 关于直线 的对称点 .
(1)若 ,求 的长;
(2)若 ,求 的长;
(3)直线 交 于点 ,若 是锐角三角形,求 长的取值范围.
在等边 中, , ,垂足为 ,点 为 边上一点,点 为直线 上一点,连接 .
(1)将线段 绕点 逆时针旋转 得到线段 ,连接 .
①如图1,当点 与点 重合,且 的延长线过点 时,连接 ,求线段 的长;
②如图2,点 不与点 , 重合, 的延长线交 边于点 ,连接 ,求证: ;
(2)如图3,当点 为 中点时,点 为 中点,点 在边 上,且 ,点 从 中点 沿射线 运动,将线段 绕点 顺时针旋转 得到线段 ,连接 ,当 最小时,直接写出 的面积.
已知四边形 是边长为1的正方形,点 是射线 上的动点,以 为直角边在直线 的上方作等腰直角三角形 , ,设 .
(1)如图,若点 在线段 上运动, 交 于点 , 交 于点 ,连结 ,
①当 时,求线段 的长;
②在 中,设边 上的高为 ,请用含 的代数式表示 ,并求 的最大值;
(2)设过 的中点且垂直于 的直线被等腰直角三角形 截得的线段长为 ,请直接写出 与 的关系式.
【推理】
如图1,在正方形 中,点 是 上一动点,将正方形沿着 折叠,点 落在点 处,连结 , ,延长 交 于点 .
(1)求证: .
【运用】
(2)如图2,在【推理】条件下,延长 交 于点 .若 , ,求线段 的长.
【拓展】
(3)将正方形改成矩形,同样沿着 折叠,连结 ,延长 , 交直线 于 , 两点,若 , ,求 的值(用含 的代数式表示).
在几何体表面上,蚂蚁怎样爬行路径最短?
(1)如图①,圆锥的母线长为 , 为母线 的中点,点 在底面圆周上, 的长为 .在图②所示的圆锥的侧面展开图中画出蚂蚁从点 爬行到点 的最短路径,并标出它的长(结果保留根号).
(2)图③中的几何体由底面半径相同的圆锥和圆柱组成. 是圆锥的顶点,点 在圆柱的底面圆周上,设圆锥的母线长为 ,圆柱的高为 .
①蚂蚁从点 爬行到点 的最短路径的长为 (用含 , 的代数式表示).
②设 的长为 ,点 在母线 上, .圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点 爬行到点 的最短路径的示意图,并写出求最短路径的长的思路.
如图1,四边形 内接于 , 为直径, 上存在点 ,满足 ,连结 并延长交 的延长线于点 , 与 交于点 .
(1)若 ,请用含 的代数式表示 .
(2)如图2,连结 , .求证: .
(3)如图3,在(2)的条件下,连结 , .
①若 ,求 的周长.
②求 的最小值.
(1)已知 , 如图①摆放,点 , , 在同一条直线上, , .连接 ,过点 作 ,垂足为点 ,直线 交 于点 .求证: .
(2)已知 , 如图②摆放, , .连接 , ,过点 作 ,垂足为点 ,直线 交 于点 .求 的值.
如图1,在 中, , 是 边上的一点, 为 的中点,过点 作 的平行线交 的延长线于 ,且 ,连接 .
(1)求证: ;
(2)在图1中 上取一点 ,使 ,作 关于边 的对称点 ,连接 、 、 、 、 得图2.
①求证: ;
②设 与 相交于点 ,求证: , .
在数学兴趣小组活动中,小亮进行数学探究活动.
(1) 是边长为3的等边三角形, 是边 上的一点,且 ,小亮以 为边作等边三角形 ,如图1.求 的长;
(2) 是边长为3的等边三角形, 是边 上的一个动点,小亮以 为边作等边三角形 ,如图2.在点 从点 到点 的运动过程中,求点 所经过的路径长;
(3) 是边长为3的等边三角形, 是高 上的一个动点,小亮以 为边作等边三角形 ,如图3.在点 从点 到点 的运动过程中,求点 所经过的路径长;
(4)正方形 的边长为3, 是边 上的一个动点,在点 从点 到点 的运动过程中,小亮以 为顶点作正方形 ,其中点 、 都在直线 上,如图4.当点 到达点 时,点 、 、 与点 重合.则点 所经过的路径长为 ,点 所经过的路径长为 .
已知点 是线段 的中点,点 是直线 上的任意一点,分别过点 和点 作直线 的垂线,垂足分别为点 和点 .我们定义垂足与中点之间的距离为"足中距".
(1) 猜想验证 如图1,当点 与点 重合时,请你猜想、验证后直接写出"足中距" 和 的数量关系是 .
(2) 探究证明 如图2,当点 是线段 上的任意一点时,"足中距" 和 的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.
(3) 拓展延伸 如图3,①当点 是线段 延长线上的任意一点时,"足中距" 和 的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;
②若 ,请直接写出线段 、 、 之间的数量关系.
问题提出
(1)如图1,在 中, , , , 是 的中点,点 在 上,且 ,求四边形 的面积.(结果保留根号)
问题解决
(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园 .按设计要求,要在五边形河畔公园 内挖一个四边形人工湖 ,使点 、 、 、 分别在边 、 、 、 上,且满足 , .已知五边形 中, , , , , .为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖 ?若存在,求四边形 面积的最小值及这时点 到点 的距离;若不存在,请说明理由.