如图1,四边形 ABCD 内接于 ⊙ O , BD 为直径, AD ̂ 上存在点 E ,满足 A E ^ = CD ^ ,连结 BE 并延长交 CD 的延长线于点 F , BE 与 AD 交于点 G .
(1)若 ∠ DBC = α ,请用含 α 的代数式表示 ∠ AGB .
(2)如图2,连结 CE , CE = BG .求证: EF = DG .
(3)如图3,在(2)的条件下,连结 CG , AD = 2 .
①若 tan ∠ ADB = 3 2 ,求 ΔFGD 的周长.
②求 CG 的最小值.
在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题: (1)甲、乙两根蜡烛燃烧前的高度分别是 ,从点燃到燃尽甲所用的时间为 . (2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式; (3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡低?
某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,工厂需要一次性投入机器租赁、安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用y(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于(个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题: (1)放入一个小球量筒中水面升高_______cm; (2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围); (3)量筒中至少放入几个小球时有水溢出?
已知:y-1与x+2成正比例,且x=1时,y=4.(1)写出与之间的函数关系式;(2)在图中画出此函数的图像;(3) 求此直线与坐标轴围成的三角形的面积.(4)观察图像,直接写出时的取值范围.
已知直线经过点,.(1)求直线的解析式;(2)若直线与直线相交于点,求点的坐标;(3)根据图象,直接写出关于的不等式的解集.