如图1,四边形 ABCD 内接于 ⊙ O , BD 为直径, AD ̂ 上存在点 E ,满足 A E ^ = CD ^ ,连结 BE 并延长交 CD 的延长线于点 F , BE 与 AD 交于点 G .
(1)若 ∠ DBC = α ,请用含 α 的代数式表示 ∠ AGB .
(2)如图2,连结 CE , CE = BG .求证: EF = DG .
(3)如图3,在(2)的条件下,连结 CG , AD = 2 .
①若 tan ∠ ADB = 3 2 ,求 ΔFGD 的周长.
②求 CG 的最小值.
(.河南省,第17题,9分)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD,PO. (1)求证:△CDP≌△POB; (2)填空: ① 若AB=4,则四边形AOPD的最大面积为 ; ② 连接OD,当∠PBA的度数为 时,四边形BPDO是菱形.
(.安徽省,第20题,10分)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ. (1)如图1,当PQ∥AB时,求PQ的长度; (2)如图2,当点P在BC上移动时,求PQ长的最大值.
(.陕西省,第23题,8分) 如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E。 (1)求证:∠BAD=∠E; (2)若⊙O的半径为5,AC=8,求BE的长。
(.北京市,第22题,5分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF. (1)求证:四边形BFDE是矩形; (2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
(.宁夏,第21题,6分)在平行四边形ABCD中,E为BC边上的一点.连结AE. (1)若AB=AE, 求证:∠DAE=∠D; (2)若点E为BC的中点,连接BD,交AE于F,求EF︰FA的值.