如图所示,四边形 为正方形,在 中, , , 的延长线与 的延长线交于点 ,点 、 、 在同一条直线上.
(1)求证: ;
(2)当 时,求 的值;
(3)当 , 时,求 的值.
下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.
小明:如图1, 分别在射线OA,OB上截取 , 点C,E不重合 ; 分别作线段CE,DF的垂直平分线 , ,交点为P,垂足分别为点G,H; 作射线OP,射线即为 的平分线. 简述理由如下: 由作图知, , , ,所以 ≌ ,则 ,即射线OP是 的平分线. 小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2, 分别在射线OA,OB上截取 , 点C,E不重合 ; 连接DE,CF,交点为P; 作射线 射线OP即为 的平分线.
|
任务:
小明得出 ≌ 的依据是______ 填序号 .
小军作图得到的射线0P是 的平分线吗?请判断并说明理由.
如图3,已知 ,点E,F分别在射线OA,OB上,且 点C,D分别为射线OA,OB上的动点,且 ,连接DE,CF,交点为P,当 时,直接写出线段OC的长.
(1)阅读理解
我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.
根据“赵爽弦图”写出勾股定理和推理过程;
(2)问题解决
勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形 的中心 ,作 ,将它分成4份,所分成的四部分和以 为边的正方形恰好能拼成以 为边的正方形.若 , ,求 的值;
(3)拓展探究
如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形 的边长为定值 ,小正方形 , , , 的边长分别为 , , , .
已知 ,当角 变化时,探究 与 的关系式,并写出该关系式及解答过程 与 的关系式用含 的式子表示).
已知在 中, 为 边的中点,连接 ,将 绕点 顺时针方向旋转(旋转角为钝角),得到 ,连接 , .
(1)如图1,当 且 时,则 与 满足的数量关系是 ;
(2)如图2,当 且 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图3,延长 到点 ,使 ,连接 ,当 , 时,求 的长.
在 中, , 是边 上一动点,连接 ,将 绕点 逆时针旋转至 的位置,使得 .
(1)如图1,当 时,连接 ,交 于点 .若 平分 , ,求 的长;
(2)如图2,连接 ,取 的中点 ,连接 .猜想 与 存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接 , .若 ,当 , 时,请直接写出 的值.
【证明体验】
(1)如图1, 为 的角平分线, ,点 在 上, .求证: 平分 .
【思考探究】
(2)如图2,在(1)的条件下, 为 上一点,连结 交 于点 .若 , , ,求 的长.
【拓展延伸】
(3)如图3,在四边形 中,对角线 平分 , ,点 在 上, .若 , , ,求 的长.
在扇形 中,半径 ,点 在 上,连结 ,将 沿 折叠得到△ .
(1)如图1,若 ,且 与 所在的圆相切于点 .
①求 的度数.
②求 的长.
(2)如图2, 与 相交于点 ,若点 为 的中点,且 ,求 的长.
已知在 中, 是 的中点, 是 延长线上的一点,连结 , .
(1)如图1,若 , , , ,求 的长.
(2)过点 作 ,交 延长线于点 ,如图2所示,若 , ,求证: .
(3)如图3,若 ,是否存在实数 ,当 时, ?若存在,请写出 的值;若不存在,请说明理由.
如图1,在四边形 中, ,点 在边 上,且 , ,作 交线段 于点 ,连接 .
(1)求证: ;
(2)如图2.若 , , ,求 的长;
(3)如图3,若 的延长线经过 的中点 ,求 的值.
如图,圆 中两条互相垂直的弦 , 交于点 .
(1) 是 的中点, , ,求圆 的半径长;
(2)点 在 上,且 ,求证: .
已知,在 中, , .
(1)如图1,已知点 在 边上, , ,连结 .试探究 与 的关系;
(2)如图2,已知点 在 下方, , ,连结 .若 , , , 交 于点 ,求 的长;
(3)如图3,已知点 在 下方,连结 、 、 .若 , , , ,求 的值.
如图,在 中, 是直径, 是弦, ,垂足为 ,过点 的 的切线与 延长线交于点 ,连接 .
(1)求证: 为 的切线;
(2)若 半径为3, ,求 .
在等腰 中, ,点 是 边上一点(不与点 、 重合),连结 .
(1)如图1,若 ,点 关于直线 的对称点为点 ,连结 , ,则 ;
(2)若 ,将线段 绕点 顺时针旋转 得到线段 ,连结 .
①在图2中补全图形;
②探究 与 的数量关系,并证明;
(3)如图3,若 ,且 .试探究 、 、 之间满足的数量关系,并证明.
如图1,在 中, , ,点 是 边上一点(含端点 、 ,过点 作 垂直于射线 ,垂足为 ,点 在射线 上,且 ,连接 、 .
(1)求证: ;
(2)如图2,连接 ,点 、 、 分别为线段 、 、 的中点,连接 、 、 .求 的度数及 的值;
(3)在(2)的条件下,若 ,直接写出 面积的最大值.