如图所示,四边形 ABCD 为正方形,在 ΔECH 中, ∠ ECH = 90 ° , CE = CH , HE 的延长线与 CD 的延长线交于点 F ,点 D 、 B 、 H 在同一条直线上.
(1)求证: ΔCDE ≅ ΔCBH ;
(2)当 HB HD = 1 5 时,求 FD FC 的值;
(3)当 HB = 3 , HG = 4 时,求 sin ∠ CFE 的值.
解方程:.
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
如图,点是半圆的半径上的动点,作于.点是半圆上位于左侧的点,连结交线段于,且.(1)求证:是⊙O的切线.(2)若⊙O的半径为,,设.①求关于的函数关系式.②当时,求的值.
我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=600,(1)求山坡高度;(2)为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC削进到E 处,问BE至少是多少米(结果保留根号)?
已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.