如图1,在四边形 ABCD 中, ∠ ABC = ∠ BCD ,点 E 在边 BC 上,且 AE / / CD , DE / / AB ,作 CF / / AD 交线段 AE 于点 F ,连接 BF .
(1)求证: ΔABF ≅ ΔEAD ;
(2)如图2.若 AB = 9 , CD = 5 , ∠ ECF = ∠ AED ,求 BE 的长;
(3)如图3,若 BF 的延长线经过 AD 的中点 M ,求 BE EC 的值.
解方程:;
如图,在矩形OABC中,点A(0,10),C(8,0).沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC, OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点. (1)求D的的坐标及抛物线的解析式; (2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似? (3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元. (1)当FG长为多少米时,种草的面积与种花的面积相等? (2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?