在等腰 ΔABC 中, AB = AC ,点 D 是 BC 边上一点(不与点 B 、 C 重合),连结 AD .
(1)如图1,若 ∠ C = 60 ° ,点 D 关于直线 AB 的对称点为点 E ,连结 AE , DE ,则 ∠ BDE = ;
(2)若 ∠ C = 60 ° ,将线段 AD 绕点 A 顺时针旋转 60 ° 得到线段 AE ,连结 BE .
①在图2中补全图形;
②探究 CD 与 BE 的数量关系,并证明;
(3)如图3,若 AB BC = AD DE = k ,且 ∠ ADE = ∠ C .试探究 BE 、 BD 、 AC 之间满足的数量关系,并证明.
从南京站开往上海站的一辆和谐号动车,中途只停靠苏州站,甲、乙、丙3名互不相识的旅客同时从南京站上车. (1)求甲、乙、丙三名旅客在同一个站下车的概率; (2)求甲、乙、丙三名旅客中至少有一人在苏州站下车的概率.
(1)解不等式组; (2)先化简,再求值:,其中a是方程x2+x=6的一个根.
(1)计算:-32+(1-π)0+(-)-2; (2)因式分解:3x2y-18xy2+27y3.
如图,点A(-2,5)和点B(-5,a)在反比例函数y=的图象上,直线y=x+b分别交x轴的正半轴于点D,交y轴的负半轴于点C,且AB=CD.二次函数的图象经过A、C、D三点. (1)求a、k的值及直线AB的函数表达式; (2)求点C、D的坐标及二次函数的表达式; (3)如果点E在第四象限的二次函数图象上,且∠OCE=∠BDC,求点E的坐标.
如图,在矩形ABCD中,AB=9,AD=12.动点E从点B出发,沿线段BC(不包括端点B、C)以每秒2个单位长度的速度,匀速向点C运动;动点F从点C出发,沿线段CD(不包括端点C、D)以每秒1个单位长度的速度,匀速向点D运动;点E、F同时出发,同时停止.连接AF并延长交BC的延长线于点M,再把AM沿AD翻折交CD延长线于点N,连接MN.设运动时间为t秒. (1)当t为何值时,△ABE∽△ECF; (2)在点E运动的过程中是否存在某个时刻使AE⊥AN?若存在请求出t的值,若不存在请说明理由; (3)在运动的过程中,△AMN的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.