如图1,在 ΔABC 中, ∠ ACB = 90 ° , AC = BC ,点 D 是 AB 边上一点(含端点 A 、 B ) ,过点 B 作 BE 垂直于射线 CD ,垂足为 E ,点 F 在射线 CD 上,且 EF = BE ,连接 AF 、 BF .
(1)求证: ΔABF ∽ ΔCBE ;
(2)如图2,连接 AE ,点 P 、 M 、 N 分别为线段 AC 、 AE 、 EF 的中点,连接 PM 、 MN 、 PN .求 ∠ PMN 的度数及 MN PM 的值;
(3)在(2)的条件下,若 BC = 2 ,直接写出 ΔPMN 面积的最大值.
关于x的一元二次方程有两个实数根、. (1)求p的取值范围; (2)若,求p的值.
先化简,再求值:,其中x是一元二次方程的根.
(每题5分,共10分)解方程: (1) (2)(用配方法)
(本题共12分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法. 我们有多种剪法,图1是其中的一种方法: 定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线. (1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种) (2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值; (3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.
(本题共12分)如图,在Rt△ABC中,∠C=90º,AB=10cm,AC∶BC=4∶3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动. (1)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (2)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由; (3)当点Q在BC边上运动时,是否存在x,使得以△PBQ的一个顶点为圆心作圆时,另外两个顶点均在这个圆上,若存在,求出 x的值;不存在,说明理由.