在平面直角坐标系中,点 A 的坐标为 ( - 73 , 0 ) ,点 B 在直线 l : y = 3 8 x 上,过点 B 作 AB 的垂线,过原点 O 作直线 l 的垂线,两垂线相交于点 C .
(1)如图,点 B , C 分别在第三、二象限内, BC 与 AO 相交于点 D .
①若 BA = BO ,求证: CD = CO .
②若 ∠ CBO = 45 ° ,求四边形 ABOC 的面积.
(2)是否存在点 B ,使得以 A , B , C 为顶点的三角形与 ΔBCO 相似?若存在,求 OB 的长;若不存在,请说明理由.
解不等式组:
解方程:
如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E. (1)求证:AB·AF=CB·CD (2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=xcm(x>0), 四边形BCDP的面积为ycm2. ①求y关于x的函数关系式; ②当x为何值时,△PBC的周长最小,并求出此时y的值.
如图,ABMN中,AC平分∠BAN交BM于C点,CD∥AB交AN于D点. (1)判断四边形ABCD的形状并证明你的结论; (2)以B点为坐标原点,BM所在的直线为横轴建立平面直角坐标系,若∠ABM = 60°,A点横坐标为2,请直接写出A、C、D点坐标及经过D点的反比例函数解析式; (3)设(2)中反比例函数的图象与MN交于P点,求当BM的长为多少时,P点为MN的中点。
某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润售价进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.