初中数学

如图,在平面直角坐标系中,菱形 ABCD 的顶点 D 在第二象限,其余顶点都在第一象限, AB / / x 轴, AO AD AO = AD .过点 A AE CD ,垂足为 E DE = 4 CE .反比例函数 y = k x ( x > 0 ) 的图象经过点 E ,与边 AB 交于点 F ,连接 OE OF EF .若 S ΔEOF = 11 8 ,则 k 的值为 (    )

A.

7 3

B.

21 4

C.

7

D.

21 2

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, M 经过原点 O ,分别交 x 轴、 y 轴于点 A ( 2 , 0 ) B ( 0 , 8 ) ,连结 AB .直线 CM 分别交 M 于点 D E (点 D 在左侧),交 x 轴于点 C ( 17 , 0 ) ,连结 AE

(1)求 M 的半径和直线 CM 的函数表达式;

(2)求点 D E 的坐标;

(3)点 P 在线段 AC 上,连结 PE .当 AEP ΔOBD 的一个内角相等时,求所有满足条件的 OP 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形 ABCD 的顶点 A x 轴正半轴上,顶点 B C 在第一象限,顶点 D 的坐标 ( 5 2 2 ) .反比例函数 y = k x (常数 k > 0 x > 0 ) 的图象恰好经过正方形 ABCD 的两个顶点,则 k 的值是   

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,对于不在坐标轴上的任意一点 A ( x , y ) ,我们把点 B ( 1 x 1 y ) 称为点 A 的"倒数点".如图,矩形 OCDE 的顶点 C ( 3 , 0 ) ,顶点 E y 轴上,函数 y = 2 x ( x > 0 ) 的图象与 DE 交于点 A .若点 B 是点 A 的"倒数点",且点 B 在矩形 OCDE 的一边上,则 ΔOBC 的面积为   

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 A 的坐标为 ( - 73 0 ) ,点 B 在直线 l : y = 3 8 x 上,过点 B AB 的垂线,过原点 O 作直线 l 的垂线,两垂线相交于点 C

(1)如图,点 B C 分别在第三、二象限内, BC AO 相交于点 D

①若 BA = BO ,求证: CD = CO

②若 CBO = 45 ° ,求四边形 ABOC 的面积.

(2)是否存在点 B ,使得以 A B C 为顶点的三角形与 ΔBCO 相似?若存在,求 OB 的长;若不存在,请说明理由.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,有一只用七巧板拼成的"猫",三角形①的边 BC 及四边形②的边 CD 都在 x 轴上,"猫"耳尖 E y 轴上.若"猫"尾巴尖 A 的横坐标是1,则"猫"爪尖 F 的坐标是   

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,以点 A ( 3 , 1 ) 为端点的四条射线 AB AC AD AE 分别过点 B ( 1 , 1 ) ,点 C ( 1 , 3 ) ,点 D ( 4 , 4 ) ,点 E ( 5 , 2 ) ,则 BAC    DAE (填" > "、" = "、" < "中的一个).

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, ABCD 的顶点 A B C 的坐标分别是 ( 0 , 1 ) ( - 2 , - 2 ) ( 2 , - 2 ) ,则顶点 D 的坐标是 (    )

A.

( - 4 , 1 )

B.

( 4 , - 2 )

C.

( 4 , 1 )

D.

( 2 , 1 )

来源:2021年天津市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知平面直角坐标系中,点 P ( x 0 y 0 ) 和直线 Ax + By + C = 0 (其中 A B 不全为 0 ) ,则点 P 到直线 Ax + By + C = 0 的距离 d 可用公式 d = | A x 0 + B y 0 + C | A 2 + B 2 来计算.

例如:求点 P ( 1 , 2 ) 到直线 y = 2 x + 1 的距离,因为直线 y = 2 x + 1 可化为 2 x - y + 1 = 0 ,其中 A = 2 B = - 1 C = 1 ,所以点 P ( 1 , 2 ) 到直线 y = 2 x + 1 的距离为: d = | A x 0 + B y 0 + C | A 2 + B 2 = | 2 × 1 + ( - 1 ) × 2 + 1 | 2 2 + ( - 1 ) 2 = 1 5 = 5 5

根据以上材料,解答下列问题:

(1)求点 M ( 0 , 3 ) 到直线 y = 3 x + 9 的距离;

(2)在(1)的条件下, M 的半径 r = 4 ,判断 M 与直线 y = 3 x + 9 的位置关系,若相交,设其弦长为 n ,求 n 的值;若不相交,说明理由.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,菱形 ABCD 的顶点 A B C 在坐标轴上,若点 B 的坐标为 ( 1 , 0 ) BCD = 120 ° ,则点 D 的坐标为 (    )

A.

( 2 , 2 )

B.

( 3 2 )

C.

( 3 , 3 )

D.

( 2 , 3 )

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,平行四边形 ABCD 的对称中心是坐标原点,顶点 A B 的坐标分别是 ( 1 , 1 ) ( 2 , 1 ) ,将平行四边形 ABCD 沿 x 轴向右平移3个单位长度,则顶点 C 的对应点 C 1 的坐标是  

来源:2021年山东省临沂市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,矩形 OABC 的顶点 O 在坐标原点,顶点 A C 分别在 x 轴, y 轴上, B D 两点坐标分别为 B ( 4 , 6 ) D ( 0 , 4 ) ,线段 EF 在边 OA 上移动,保持 EF = 3 ,当四边形 BDEF 的周长最小时,点 E 的坐标为   

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的两边 OC OA 分别在坐标轴上,且 OA = 2 OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB BC 分别交于点 E F .一次函数 y = k 2 x + b 的图象经过 E F 两点.

(1)分别求出一次函数和反比例函数的表达式;

(2)点 P x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 A ( 3 , 0 ) B ( 0 , 4 ) .以 AB 为一边在第一象限作正方形 ABCD ,则对角线 BD 所在直线的解析式为 (    )

A.

y = 1 7 x + 4

B.

y = 1 4 x + 4

C.

y = 1 2 x + 4

D.

y = 4

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,点 A B 在反比例函数 y = k x ( x > 0 ) 的图象上,延长 AB x 轴于 C 点,若 ΔAOC 的面积是12,且点 B AC 的中点,则 k =   

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

初中数学坐标与图形性质试题