如图,在平面直角坐标系中,矩形 OABC 的两边 OC 、 OA 分别在坐标轴上,且 OA = 2 , OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB 、 BC 分别交于点 E 、 F .一次函数 y = k 2 x + b 的图象经过 E 、 F 两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点 P 是 x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为 .
如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF. (1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论; (2)若EF∥CD,求∠BDC的度数.
如图,四边形ABCD的对角线AC与BD相交于点O,∠1=∠2,∠3=∠4. 求证:(1) BC=DC; (2) AC⊥BD.
如图,△ABC中,,,AB=AC. (1)求的度数; (2)求证:BC=BD=AD.
如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)
如图,在△ABC中,CD是AB边的中线,∠CDB=60°,将△BCD沿CD折叠,使点B落在点E的位置.证明:△ADE是等边三角形.