问题背景:如图1,等腰 ΔABC 中, AB = AC , ∠ BAC = 120 ° ,作 AD ⊥ BC 于点 D ,则 D 为 BC 的中点, ∠ BAD = 1 2 ∠ BAC = 60 ° ,于是 BC AB = 2 BD AB = 3 ;
迁移应用:如图2, ΔABC 和 ΔADE 都是等腰三角形, ∠ BAC = ∠ DAE = 120 ° , D , E , C 三点在同一条直线上,连接 BD .
①求证: ΔADB ≅ ΔAEC ;
②请直接写出线段 AD , BD , CD 之间的等量关系式;
拓展延伸:如图3,在菱形 ABCD 中, ∠ ABC = 120 ° ,在 ∠ ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE , CF .
①证明 ΔCEF 是等边三角形;
②若 AE = 5 , CE = 2 ,求 BF 的长.
附加题: 在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天, 若由甲队先做20天,剩下的工程由甲、乙合作24天可完成. (1)乙队单独完成这项工程需要多少天? (2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完 成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工 程省钱?
请认真观察图形,解答下列问题: (1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简); (2)由(1),你能得到怎样的等量关系?请用等式表示; (3)如果图中的(>)满足,,求:①的值;②的值.
如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB. (1)求证:△DEF是等腰三角形; (2)当∠A=40°时,求∠DEF的度数。
如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一 轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.
先化简,再求值.,其中,.