问题背景:如图1,等腰 ΔABC 中, AB = AC , ∠ BAC = 120 ° ,作 AD ⊥ BC 于点 D ,则 D 为 BC 的中点, ∠ BAD = 1 2 ∠ BAC = 60 ° ,于是 BC AB = 2 BD AB = 3 ;
迁移应用:如图2, ΔABC 和 ΔADE 都是等腰三角形, ∠ BAC = ∠ DAE = 120 ° , D , E , C 三点在同一条直线上,连接 BD .
①求证: ΔADB ≅ ΔAEC ;
②请直接写出线段 AD , BD , CD 之间的等量关系式;
拓展延伸:如图3,在菱形 ABCD 中, ∠ ABC = 120 ° ,在 ∠ ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE , CF .
①证明 ΔCEF 是等边三角形;
②若 AE = 5 , CE = 2 ,求 BF 的长.
如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
已知二次函数(1)求函数的顶点C的坐标,并描述该函数的函数值随自变量的增减而增减的情况;(2)求函数图象与轴的交点A,B的坐标及△ABC的面积.
在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(-4,0),(1)若将△AOB绕点O逆时针旋转90°得到,请在图中画出,并写出点的坐标;(2)若将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F. 请在图中画出△AEF,并写出点E,F的坐标.
用适当的方法解方程:.
如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?