在 ΔABC 中, AB = AC , ∠ BAC = 120 ° ,以 CA 为边在 ∠ ACB 的另一侧作 ∠ ACM = ∠ ACB ,点 D 为射线 BC 上任意一点,在射线 CM 上截取 CE = BD ,连接 AD 、 DE 、 AE .
(1)如图1,当点 D 落在线段 BC 的延长线上时,直接写出 ∠ ADE 的度数;
(2)如图2,当点 D 落在线段 BC (不含边界)上时, AC 与 DE 交于点 F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若 AB = 6 ,求 CF 的最大值.
已知抛物线的顶点为A(1,﹣4),且过点B(3,0).求该抛物线的解析式.
解方程: x2﹣6x=1.
如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C.抛物线经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.
如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm?(3)如果P、Q分别从A、B同时出发,△PBQ的面积能否等于8cm2?说明理由.由此思考:△PBQ的面积最多为多少cm2?