在四边形 中, , , , .以 为腰作等腰 ,使 ,过点 作 交直线 于点 .请画出图形,并直接写出 的长.
如图,四边形 是平行四边形,延长 至点 ,使 ,连接 .
(1)求证:四边形 是平行四边形;
(2)若 , ,求点 到点 的距离.
如图,在等腰三角形 中, , ,点 是 边上的一个动点(不与 、 重合),在 上取一点 ,使 .
(1)求证: ;
(2)设 , ,求 关于 的函数关系式并写出自变量 的取值范围;
(3)当 是等腰三角形时,求 的长.
如图, 是 的直径,点 为线段 上一点(不与 , 重合),作 ,交 于点 ,作直径 ,过点 的切线交 的延长线于点 ,作 于点 ,连接 .
(1)求证: 平分 ;
(2)求证: ;
(3)当 且 时,求劣弧 的长度.
如图, 是 的直径,弦 与 交于点 ,且 ,连接 , .
(1)求证: ;
(2)若 , ,求弦 的长;
(3)在(2)的条件下,延长 至点 ,使 ,连接 .求证: 是 的切线.
【操作发现】
(1)如图1, 为等边三角形,先将三角板中的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板斜边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .
①求 的度数;
② 与 相等吗?请说明理由;
【类比探究】
(2)如图2, 为等腰直角三角形, ,先将三角板的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板另一直角边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .请直接写出探究结果:
① 的度数;
②线段 , , 之间的数量关系.
数学课上,张老师举了下面的例题:
例1 等腰三角形 中, ,求 的度数.(答案:
例2 等腰三角形 中, ,求 的度数,(答案: 或 或
张老师启发同学们进行变式,小敏编了如下一题:
变式 等腰三角形 中, ,求 的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现, 的度数不同,得到 的度数的个数也可能不同,如果在等腰三角形 中,设 ,当 有三个不同的度数时,请你探索 的取值范围.
如图,在 中, , 、 分别是边 、 的中点,过点 作 交 的延长线于点 ,连接 .
(1)求证:四边形 是菱形;
(2)若四边形 的面积为24, ,求 的长.
如图,四边形 是边长为1的正方形,点 在 边上运动,且不与点 和点 重合,连接 ,过点 作 交 的延长线于点 , 交 于点 .
(1)求证: ;
(2)当 时,求 的长;
(3)连接 ,在点 运动过程中,四边形 能否为平行四边形?若能,求出此时 的长;若不能,说明理由.
如图, 是 的直径,过点 作 的切线 ,点 是射线 上的动点,连接 ,过点 作 ,交 于点 ,连接 .
(1)求证: 是 的切线;
(2)当四边形 是平行四边形时,求 的度数.
如图,在 中, , , 是 边上一点(点 与 , 不重合),连接 ,将线段 绕点 按逆时针方向旋转 得到线段 ,连接 交 于点 ,连接 .
(1)求证: ;
(2)当 时,求 的度数.
如图,在 中, ,以 为直径的半圆 交 于点 ,过点 作半圆 的切线,交 于点 .
(1)求证: ;
(2)若 , ,求 的长.