初中数学

在四边形 ABCD 中, B = C = 90 ° AB = 3 BC = 4 CD = 1 .以 AD 为腰作等腰 ΔADE ,使 ADE = 90 ° ,过点 E EF DC 交直线 CD 于点 F .请画出图形,并直接写出 AF 的长.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形,延长 AD 至点 E ,使 DE = AD ,连接 BD

(1)求证:四边形 BCED 是平行四边形;

(2)若 DA = DB = 2 cos A = 1 4 ,求点 B 到点 E 的距离.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在等腰三角形 ABC 中, BAC = 120 ° AB = AC = 2 ,点 D BC 边上的一个动点(不与 B C 重合),在 AC 上取一点 E ,使 ADE = 30 °

(1)求证: ΔABD ΔDCE

(2)设 BD = x AE = y ,求 y 关于 x 的函数关系式并写出自变量 x 的取值范围;

(3)当 ΔADE 是等腰三角形时,求 AE 的长.

来源:2017年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 E 为线段 OB 上一点(不与 O B 重合),作 EC OB ,交 O 于点 C ,作直径 CD ,过点 C 的切线交 DB 的延长线于点 P ,作 AF PC 于点 F ,连接 CB

(1)求证: AC 平分 FAB

(2)求证: B C 2 = CE CP

(3)当 AB = 4 3 CF CP = 3 4 时,求劣弧 BD ̂ 的长度.

来源:2018年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,点 E AD 的中点,连接 CE 并延长,交 BA 的延长线于点 F .求证: FA = AB

来源:2020年宁夏中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 AC BD 交于点 E ,且 AC = BD ,连接 AD BC

(1)求证: ΔADB ΔBCA

(2)若 OD AC AB = 4 ,求弦 AC 的长;

(3)在(2)的条件下,延长 AB 至点 P ,使 BP = 2 ,连接 PC .求证: PC O 的切线.

来源:2019年贵州省遵义市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

【操作发现】

(1)如图1, ΔABC 为等边三角形,先将三角板中的 60 ° 角与 ACB 重合,再将三角板绕点 C 按顺时针方向旋转(旋转角大于 0 ° 且小于 30 ° ) ,旋转后三角板的一直角边与 AB 交于点 D ,在三角板斜边上取一点 F ,使 CF = CD ,线段 AB 上取点 E ,使 DCE = 30 ° ,连接 AF EF

①求 EAF 的度数;

DE EF 相等吗?请说明理由;

【类比探究】

(2)如图2, ΔABC 为等腰直角三角形, ACB = 90 ° ,先将三角板的 90 ° 角与 ACB 重合,再将三角板绕点 C 按顺时针方向旋转(旋转角大于 0 ° 且小于 45 ° ) ,旋转后三角板的一直角边与 AB 交于点 D ,在三角板另一直角边上取一点 F ,使 CF = CD ,线段 AB 上取点 E ,使 DCE = 45 ° ,连接 AF EF .请直接写出探究结果:

EAF 的度数;

②线段 AE ED DB 之间的数量关系.

来源:2017年山东省烟台市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

数学课上,张老师举了下面的例题:

1 等腰三角形 ABC 中, A = 110 ° ,求 B 的度数.(答案: 35 ° )

2 等腰三角形 ABC 中, A = 40 ° ,求 B 的度数,(答案: 40 ° 70 ° 100 ° )

张老师启发同学们进行变式,小敏编了如下一题:

变式 等腰三角形 ABC 中, A = 80 ° ,求 B 的度数.

(1)请你解答以上的变式题.

(2)解(1)后,小敏发现, A 的度数不同,得到 B 的度数的个数也可能不同,如果在等腰三角形 ABC 中,设 A = x ° ,当 B 有三个不同的度数时,请你探索 x 的取值范围.

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AC 是对角线, BE AC DF AC ,垂足分别为点 E F ,求证: AE = CF

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是边长为1的正方形,点 E AD 边上运动,且不与点 A 和点 D 重合,连接 CE ,过点 C CF CE AB 的延长线于点 F EF BC 于点 G

(1)求证: ΔCDE ΔCBF

(2)当 DE = 1 2 时,求 CG 的长;

(3)连接 AG ,在点 E 运动过程中,四边形 CEAG 能否为平行四边形?若能,求出此时 DE 的长;若不能,说明理由.

来源:2017年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,过点 A O 的切线 AC ,点 P 是射线 AC 上的动点,连接 OP ,过点 B BD / / OP ,交 O 于点 D ,连接 PD

(1)求证: PD O 的切线;

(2)当四边形 POBD 是平行四边形时,求 APO 的度数.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = BC D AB 边上一点(点 D A B 不重合),连接 CD ,将线段 CD 绕点 C 按逆时针方向旋转 90 ° 得到线段 CE ,连接 DE BC 于点 F ,连接 BE

(1)求证: ΔACD ΔBCE

(2)当 AD = BF 时,求 BEF 的度数.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,以 BC 为直径的半圆 O AB 于点 D ,过点 D 作半圆 O 的切线,交 AC 于点 E

(1)求证: ACB = 2 ADE

(2)若 DE = 3 AE = 3 ,求 CD ^ 的长.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知: 在 ΔABC 中, AB = AC D AC 的中点, DE AB DF BC ,垂足分别为点 E F ,且 DE = DF . 求证: ΔABC 是等边三角形 .

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学三角形解答题