如图,在等腰三角形 ABC 中, ∠ BAC = 120 ° , AB = AC = 2 ,点 D 是 BC 边上的一个动点(不与 B 、 C 重合),在 AC 上取一点 E ,使 ∠ ADE = 30 ° .
(1)求证: ΔABD ∽ ΔDCE ;
(2)设 BD = x , AE = y ,求 y 关于 x 的函数关系式并写出自变量 x 的取值范围;
(3)当 ΔADE 是等腰三角形时,求 AE 的长.
(1)如图1,以的边、为边分别向外作正方形和正方形,连结,试判断与面积之间的关系,并说明理由;(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是平方米,内圈的所有三角形的面积之和是平方米,这条小路一共占地多少平方米?
如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.
如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于D,CE∥AO交OB于E,CE=20cm,求CD的长.
证明能被20∽30之间的两个整数整除.
作图题:有公路同侧、异侧的两个城镇A、B,如下图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路、的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置。(保留作图痕迹,不写作法).