初中数学

已知:如图, ΔABC 是任意一个三角形,求证: A + B + C = 180 °

来源:2018年山东省淄博市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, B = 90 ° AM ΔABC 的角平分线,过点 M MN AC 于点 N EMF = 135 ° .将 EMF 绕点 M 旋转,使 EMF 的两边交直线 AB 于点 E ,交直线 AC 于点 F ,请解答下列问题:

(1)当 EMF 绕点 M 旋转到如图①的位置时,求证: BE + CF = BM

(2)当 EMF 绕点 M 旋转到如图②,图③的位置时,请分别写出线段 BE CF BM 之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下, tan BEM = 3 AN = 2 + 1 ,则 BM =    CF =   

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

【问题解决】

一节数学课上,老师提出了这样一个问题:如图1,点 P 是正方形 ABCD 内一点, PA = 1 PB = 2 PC = 3 .你能求出 APB 的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将 ΔBPC 绕点 B 逆时针旋转 90 ° ,得到△ BP ' A ,连接 PP ' ,求出 APB 的度数;

思路二:将 ΔAPB 绕点 B 顺时针旋转 90 ° ,得到△ C P ' B ,连接 PP ' ,求出 APB 的度数.

请参考小明的思路,任选一种写出完整的解答过程.

【类比探究】

如图2,若点 P 是正方形 ABCD 外一点, PA = 3 PB = 1 PC = 11 ,求 APB 的度数.

来源:2018年山东省烟台市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ BCD 中, CBD = 90 ° BC = BD ,点 A CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF EA ,交 CD 所在直线于点 F

(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: BC DE = 2 2 DF

(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 BC DE DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2018年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, BD ΔABC 外接圆 O 的直径,且 BAE = C

(1)求证: AE O 相切于点 A

(2)若 AE / / BC BC = 2 7 AC = 2 2 ,求 AD 的长.

来源:2018年山东省潍坊市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中, B = C = 90 ° AB = 3 BC = 4 CD = 1 .以 AD 为腰作等腰 ΔADE ,使 ADE = 90 ° ,过点 E EF DC 交直线 CD 于点 F .请画出图形,并直接写出 AF 的长.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图1,在四边形 BCDE 中, BC CD DE CD AB AE ,垂足分别为 C D A BC AC ,点 M N F 分别为 AB AE BE 的中点,连接 MN MF NF

(1)如图2,当 BC = 4 DE = 5 tan FMN = 1 时,求 AC AD 的值;

(2)若 tan FMN = 1 2 BC = 4 ,则可求出图中哪些线段的长?写出解答过程;

(3)连接 CM DN CF DF .试证明 ΔFMC ΔDNF 全等;

(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.

来源:2018年山东省威海市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

数学课上,张老师举了下面的例题:

1 等腰三角形 ABC 中, A = 110 ° ,求 B 的度数.(答案: 35 ° )

2 等腰三角形 ABC 中, A = 40 ° ,求 B 的度数,(答案: 40 ° 70 ° 100 ° )

张老师启发同学们进行变式,小敏编了如下一题:

变式 等腰三角形 ABC 中, A = 80 ° ,求 B 的度数.

(1)请你解答以上的变式题.

(2)解(1)后,小敏发现, A 的度数不同,得到 B 的度数的个数也可能不同,如果在等腰三角形 ABC 中,设 A = x ° ,当 B 有三个不同的度数时,请你探索 x 的取值范围.

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° D AB 边上的一点,以 AD 为直径的 O BC 于点 E ,交 AC 于点 F ,过点 C CG AB AB 于点 G ,交 AE 于点 H ,过点 E 的弦 EP AB 于点 Q ( EP 不是直径),点 Q 为弦 EP 的中点,连结 BP BP 恰好为 O 的切线.

(1)求证: BC O 的切线.

(2)求证: EF ̂ = ED ̂

(3)若 sin ABC = = 3 5 AC = 15 ,求四边形 CHQE 的面积.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AC 是对角线, BE AC DF AC ,垂足分别为点 E F ,求证: AE = CF

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,点 P Q 分别是等边 ΔABC AB BC 上的动点(端点除外),点 P 、点 Q 以相同的速度,同时从点 A 、点 B 出发.

(1)如图1,连接 AQ CP .求证: ΔABQ ΔCAP

(2)如图1,当点 P Q 分别在 AB BC 边上运动时, AQ CP 相交于点 M QMC 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;

(3)如图2,当点 P Q AB BC 的延长线上运动时,直线 AQ CP 相交于 M QMC 的大小是否变化?若变化,请说明理由;若不变,求出它的度数.

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,过点 A O 的切线 AC ,点 P 是射线 AC 上的动点,连接 OP ,过点 B BD / / OP ,交 O 于点 D ,连接 PD

(1)求证: PD O 的切线;

(2)当四边形 POBD 是平行四边形时,求 APO 的度数.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = BC D AB 边上一点(点 D A B 不重合),连接 CD ,将线段 CD 绕点 C 按逆时针方向旋转 90 ° 得到线段 CE ,连接 DE BC 于点 F ,连接 BE

(1)求证: ΔACD ΔBCE

(2)当 AD = BF 时,求 BEF 的度数.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,以 BC 为直径的半圆 O AB 于点 D ,过点 D 作半圆 O 的切线,交 AC 于点 E

(1)求证: ACB = 2 ADE

(2)若 DE = 3 AE = 3 ,求 CD ^ 的长.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知: 在 ΔABC 中, AB = AC D AC 的中点, DE AB DF BC ,垂足分别为点 E F ,且 DE = DF . 求证: ΔABC 是等边三角形 .

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学三角形解答题