在等腰 中, , 是 的角平分线,过点 作 于点 , .将 绕点 旋转,使 的两边交直线 于点 ,交直线 于点 ,请解答下列问题:
(1)当 绕点 旋转到如图①的位置时,求证: ;
(2)当 绕点 旋转到如图②,图③的位置时,请分别写出线段 , , 之间的数量关系,不需要证明;
(3)在(1)和(2)的条件下, , ,则 , .
【问题解决】
一节数学课上,老师提出了这样一个问题:如图1,点 是正方形 内一点, , , .你能求出 的度数吗?
小明通过观察、分析、思考,形成了如下思路:
思路一:将 绕点 逆时针旋转 ,得到△ ,连接 ,求出 的度数;
思路二:将 绕点 顺时针旋转 ,得到△ ,连接 ,求出 的度数.
请参考小明的思路,任选一种写出完整的解答过程.
【类比探究】
如图2,若点 是正方形 外一点, , , ,求 的度数.
如图,在 中, , ,点 在 的延长线上,且 ,点 在直线 上移动,过点 作射线 ,交 所在直线于点 .
(1)当点 在线段 上移动时,如图(1)所示,求证: .
(2)当点 在直线 上移动时,如图(2)、图(3)所示,线段 、 与 又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图, 为 外接圆 的直径,且 .
(1)求证: 与 相切于点 ;
(2)若 , , ,求 的长.
在四边形 中, , , , .以 为腰作等腰 ,使 ,过点 作 交直线 于点 .请画出图形,并直接写出 的长.
如图1,在四边形 中, , , ,垂足分别为 , , , ,点 , , 分别为 , , 的中点,连接 , , .
(1)如图2,当 , , 时,求 的值;
(2)若 , ,则可求出图中哪些线段的长?写出解答过程;
(3)连接 , , , .试证明 与 全等;
(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.
数学课上,张老师举了下面的例题:
例1 等腰三角形 中, ,求 的度数.(答案:
例2 等腰三角形 中, ,求 的度数,(答案: 或 或
张老师启发同学们进行变式,小敏编了如下一题:
变式 等腰三角形 中, ,求 的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现, 的度数不同,得到 的度数的个数也可能不同,如果在等腰三角形 中,设 ,当 有三个不同的度数时,请你探索 的取值范围.
如图,在 中, , 为 边上的一点,以 为直径的 交 于点 ,交 于点 ,过点 作 交 于点 ,交 于点 ,过点 的弦 交 于点 不是直径),点 为弦 的中点,连结 , 恰好为 的切线.
(1)求证: 是 的切线.
(2)求证: .
(3)若 , ,求四边形 的面积.
如图,点 、 分别是等边 边 、 上的动点(端点除外),点 、点 以相同的速度,同时从点 、点 出发.
(1)如图1,连接 、 .求证: ;
(2)如图1,当点 、 分别在 、 边上运动时, 、 相交于点 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;
(3)如图2,当点 、 在 、 的延长线上运动时,直线 、 相交于 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
如图, 是 的直径,过点 作 的切线 ,点 是射线 上的动点,连接 ,过点 作 ,交 于点 ,连接 .
(1)求证: 是 的切线;
(2)当四边形 是平行四边形时,求 的度数.
如图,在 中, , , 是 边上一点(点 与 , 不重合),连接 ,将线段 绕点 按逆时针方向旋转 得到线段 ,连接 交 于点 ,连接 .
(1)求证: ;
(2)当 时,求 的度数.
如图,在 中, ,以 为直径的半圆 交 于点 ,过点 作半圆 的切线,交 于点 .
(1)求证: ;
(2)若 , ,求 的长.