已知抛物线 与 轴交于点 、 (点 在点 的左侧),与 轴交于点 .
(1)求点 、 的坐标;
(2)设点 与点 关于该抛物线的对称轴对称.在 轴上是否存在点 ,使 与 相似,且 与 是对应边?若存在,求出点 的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于点 、 ,与 轴交于点 ,已知 .
(1)求 的值和直线 对应的函数表达式;
(2) 为抛物线上一点,若 ,请直接写出点 的坐标;
(3) 为抛物线上一点,若 ,求点 的坐标.
如图1,在平面直角坐标系中,点 的坐标是 ,在 轴上任取一点 ,连接 ,分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于 , 两点,作直线 ,过点 作 轴的垂线 交直线 于点 .根据以上操作,完成下列问题.
探究:
(1)线段 与 的数量关系为 ,其理由为: .
(2)在 轴上多次改变点 的位置,按上述作图方法得到相应点 的坐标,并完成下列表格:
的坐标 |
|
|
|
|
|
|
的坐标 |
|
|
|
|
|
|
猜想:
(3)请根据上述表格中 点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线 ,猜想曲线 的形状是 .
验证:
(4)设点 的坐标是 ,根据图1中线段 与 的关系,求出 关于 的函数解析式.
应用:
(5)如图3,点 , ,点 为曲线 上任意一点,且 ,求点 的纵坐标 的取值范围.
如图,在平面直角坐标系中,抛物线 , 为常数, 经过两点 , ,交 轴正半轴于点 .
(1)求抛物线 的解析式.
(2)过点 作 垂直于 轴,垂足为点 ,连接 , ,将 以 为轴翻折,点 的对应点为 ,直线 交 轴于点 ,请判断点 是否在抛物线上,并说明理由.
(3)在(2)的条件下,点 是线段 (不包含端点)上一动点,过点 垂直于 轴的直线分别交直线 及抛物线于点 , ,连接 ,请探究:是否存在点 ,使 是以 为腰的等腰三角形?若存在,请求出点 的坐标;若不存在,请说明理由.
如图,抛物线 经过点 , ,直线 交 轴于点 ,且与抛物线交于 , 两点, 为抛物线上一动点(不与 , 重合).
(1)求抛物线的解析式;
(2)当点 在直线 下方时,过点 作 轴交 于点 , 轴交 于点 ,求 的最大值.
(3)设 为直线 上的点,以 , , , 为顶点的四边形能否构成平行四边形?若能,求出点 的坐标;若不能,请说明理由.
如图1,抛物线 与 轴交于点 , .与 轴交于点 .连接 , .已知 的面积为2.
(1)求抛物线的解析式;
(2)平行于 轴的直线与抛物线从左到右依次交于 , 两点.过 , 向 轴作垂线,垂足分别为 , .若四边形 为正方形,求正方形的边长;
(3)如图2,平行于 轴的直线交抛物线于点 ,交 轴于点 .点 是抛物线上 , 之间的一动点,且点 不与 , 重合,连接 交 于点 .连接 并延长交 于点 .在点 运动过程中, 是否为定值?若是,求出这个定值;若不是,请说明理由.
如图,抛物线的顶点为 ,与 轴交于点 ,点 为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线 是过点 且垂直于 轴的定直线,若抛物线上的任意一点 到直线 的距离为 ,求证: ;
(3)已知坐标平面内的点 ,请在抛物线上找一点 ,使 的周长最小,并求此时 周长的最小值及点 的坐标.
在平面直角坐标系 中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)如图1,点 为第四象限抛物线上一点,连接 , 交于点 ,连接 ,记 的面积为 , 的面积为 ,求 的最大值;
(3)如图2,连接 , ,过点 作直线 ,点 , 分别为直线 和抛物线上的点.试探究:在第一象限是否存在这样的点 , ,使 .若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和点 ,抛物线 ,动直线 与抛物线 交于点 ,与抛物线 交于点 .
(1)求抛物线 的表达式;
(2)直接用含 的代数式表示线段 的长;
(3)当 是以 为直角边的等腰直角三角形时,求 的值;
(4)在(3)的条件下,设抛物线 与 轴交于点 ,点 在 轴右侧的抛物线 上,连接 交 轴于点 ,连接 ,在平面内有一点 ,连接 和 ,当 且 时,请直接写出点 的坐标.
如图,已知抛物线 过点 , , ,其顶点为 .
(1)求抛物线的解析式;
(2)设点 ,当 的值最小时,求 的值;
(3)若 是抛物线上位于直线 上方的一个动点,求 的面积的最大值;
(4)若抛物线的对称轴与直线 相交于点 , 为直线 上任意一点,过点 作 交抛物线于点 ,以 , , , 为顶点的四边形能否为平行四边形?若能,求点 的坐标;若不能,请说明理由.
如图,已知抛物线 与 轴相交于点 ,与 正半轴相交于点 ,对称轴是直线
(1)求此抛物线的解析式以及点 的坐标.
(2)动点 从点 出发,以每秒2个单位长度的速度沿 轴正方向运动,同时动点 从点 出发,以每秒3个单位长度的速度沿 轴正方向运动,当 点到达 点时, 、 同时停止运动.过动点 作 轴的垂线交线段 于点 ,交抛物线于点 ,设运动的时间为 秒.
①当 为何值时,四边形 为矩形.
②当 时, 能否为等腰三角形?若能,求出 的值;若不能,请说明理由.
如图,抛物线 的图象与 轴交于 、 两点,与 轴交于 点,已知 点坐标为 .
(1)求抛物线的解析式;
(2)试探究 的外接圆的圆心位置,并求出圆心坐标;
(3)若点 是线段 下方的抛物线上一点,求 的面积的最大值,并求出此时 点的坐标.
如图,在平面直角坐标系 中,抛物线 与 轴交于 、 两点,与 轴的负半轴交于点 ,其中 , .
(1)求抛物线 及直线 的解析式.
(2)沿直线 由 至 的方向平移抛物线 ,得到新的抛物线 , 上的点 为 上的点 的对应点,若抛物线 恰好经过点 ,同时与 轴交于另一点 ,连接 、 ,试判断 的形状,并说明理由.
(3)在(2)的条件下,若 为线段 (不含端点)上一动点,作 于 , 于点 ,设 , .试判断 的值是否存在最大值?若存在,求出这个最大值,并求出此时点 的坐标;如不存在,请说明理由.
如图,直线 与坐标轴交于 、 两点,抛物线 经过点 ,与直线 交于点 ,且与 轴交于 , 两点.
(1)求抛物线的解析式;
(2)抛物线上有一点 ,当 时,求点 的横坐标;
(3)点 在抛物线上,在坐标平面内是否存在点 ,使得以点 , , , 为顶点的四边形是矩形?若存在,请直接写出点 的坐标;若不存在,请说明理由.