如图,已知 A ( − 2 , 0 ) , B ( 4 , 0 ) ,抛物线 y = a x 2 + bx − 1 过 A 、 B 两点,并与过 A 点的直线 y = − 1 2 x − 1 交于点 C .
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点 P ,使四边形 ACPO 的周长最小?若存在,求出点 P 的坐标,若不存在,请说明理由;
(3)点 M 为 y 轴右侧抛物线上一点,过点 M 作直线 AC 的垂线,垂足为 N .问:是否存在这样的点 N ,使以点 M 、 N 、 C 为顶点的三角形与 ΔAOC 相似,若存在,求出点 N 的坐标,若不存在,请说明理由.
【原创】为创建国家级文明卫生城市,搞好“大美伊春,天然氧吧”的宣传活动,我市园林部门计划用不超过2950盆甲种花卉和2470盆乙种花卉,组建中、小型两类盆景50个.已知组建一个中型盆景需甲种花卉75盆,乙种花卉45盆;组建一个小型盆景需甲种花卉35盆,乙种花卉55盆. (1)问符合题意的组建方案有几种?请你帮园林部门设计出来; (2)若组建一个中型盆景的费用是920元,组建一个小型盆景的费用是630元,试说明在(1)中哪种方案费用最低?最低费用是多少元?
已知关于的一元二次方程 (1)求证:无论取什么实数值,该方程总有两个不相等的实数根; (2)当Rt△ABC的斜边,且两条直角边的长 b和c恰好是这个方程的两个根,求的值
【改编】如图,己知:反比例函数的图象与一次函数y=mx+b的图象交于点A(1,4),点B(-4,n). (1)求一次函数和反比例函数的解析式; (2)求△OAB的面积. (3)在直线AB上是否存在点P,使得△AOP是以OP为腰的等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.
如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0). (1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形; (2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
先化简,再求值:,其中a=+1,b=-1.