如图,在平面直角坐标系中,抛物线 y = a x 2 + bx ( a , b 为常数, a ≠ 0 ) 经过两点 A ( 2 , 4 ) , B ( 4 , 4 ) ,交 x 轴正半轴于点 C .
(1)求抛物线 y = a x 2 + bx 的解析式.
(2)过点 B 作 BD 垂直于 x 轴,垂足为点 D ,连接 AB , AD ,将 ΔABD 以 AD 为轴翻折,点 B 的对应点为 E ,直线 DE 交 y 轴于点 P ,请判断点 E 是否在抛物线上,并说明理由.
(3)在(2)的条件下,点 Q 是线段 OC (不包含端点)上一动点,过点 Q 垂直于 x 轴的直线分别交直线 DP 及抛物线于点 M , N ,连接 PN ,请探究:是否存在点 Q ,使 ΔPMN 是以 PM 为腰的等腰三角形?若存在,请求出点 Q 的坐标;若不存在,请说明理由.
如图,抛物线经过点A、B、C. (1)求此抛物线的解析式; (2)若抛物线和x轴的另一个交点为D,求△ODC的面积.
如图,已知AB为⊙O的直径,CD是弦,且ABCD于点E.连接AC、OC、BC. (1)求证:∠ACO=∠BCD. (2)若BE=3,CD=8,求⊙O的直径.
我区某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题: (1)恒温系统在这天保持大棚内温度18℃的时间有小时; (2)求k的值; (3)当x=16时,大棚内的温度约为度.
如图,小明要测量河内小岛B到河边公路AD的距离,在A点测得,在C点测得,又测得米,求小岛B到公路AD的距离.
已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE. (1)求证:△ABC∽△DAE; (2)若AB=8,AD=6,AE=4,求BC的长.