如图,在平面直角坐标系中,抛物线 C 1 : y = a x 2 + bx − 1 经过点 A ( − 2 , 1 ) 和点 B ( − 1 , − 1 ) ,抛物线 C 2 : y = 2 x 2 + x + 1 ,动直线 x = t 与抛物线 C 1 交于点 N ,与抛物线 C 2 交于点 M .
(1)求抛物线 C 1 的表达式;
(2)直接用含 t 的代数式表示线段 MN 的长;
(3)当 ΔAMN 是以 MN 为直角边的等腰直角三角形时,求 t 的值;
(4)在(3)的条件下,设抛物线 C 1 与 y 轴交于点 P ,点 M 在 y 轴右侧的抛物线 C 2 上,连接 AM 交 y 轴于点 K ,连接 KN ,在平面内有一点 Q ,连接 KQ 和 QN ,当 KQ = 1 且 ∠ KNQ = ∠ BNP 时,请直接写出点 Q 的坐标.
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.
如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,若,AB=9,AO=6,求DE和AE的长.
已知:△ABC∽△A′B′C′,AB=4cm,A′B′=10cm,AE是△ABC的一条高,AE=4.8cm.求△A′B′C′中对应高线A′E′的长.
如图,甲、乙两人分别从A(1,)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向,乙沿BO方向均以4km/h的速度行走.th后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;(2)当t为何值时,△OMN∽△OBA?
如图,A(1,0),B(3,0),C(0,3),D(2,-1),P(2,2).(1)问:△ABC与△ADP相似吗?说明理由;(2)在图中标出点D关于y轴的对称点D′,连接AD′、CD′,判断△ACD′的形状,并说明理由;(3)求∠OCA+∠OCD的度数.