如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.
直线l1平行于直线l2,直线l3、l4分别与l1、l2交于点B、F和A、E,点D是直线l3上一动点,DC∥AB交l4于点C.(1)如图,当点D在l1、l2两线之间运动时,试找出∠BAD、∠DEF、∠ADE之间的关系,并说明理由;(2)当点D在l1、l2两线外侧运动时,试探究∠BAD、∠DEF、∠ADE之间的关系(点D和B、F不重合),画出图形,给出结论,不必说明理由.
某校为了更好地开展“阳光体育一小时”活动,围绕着“你最喜欢的体育活动项目是什么(只写一项)?”的问题,对本校学生进行了随机抽样调查,以下是根据得到的相关数据绘制的统计图的一部分.各年级学生人数统计表
请根据以上信息解答下列问题:(1)该校对多少名学生进行了抽样调查?(2)请将图1和图2补充完整;(3)已知该校七年级学生比九年级学生少20人,请你补全上表,并利用样本数据估计全校学生中最喜欢踢毽子运动的人数约为多少?
列方程(组)解应用题:水上公园的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.
对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa+3a2,就不能直接运用公式了.小红是这样想的:在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa-3a2=(x2+2xa+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.参考小红思考问题的方法,利用“配方法”把a2-6a+8进行因式分解.
看图填空:如图,∠1的同位角是 ,∠1的内错角是 ,如果∠1=∠BCD,那么 ,根据是 ;如果∠ACD=∠EGF,那么 ,根据是 .