如图,抛物线 y = 2 3 x 2 + bx + c 经过点 B ( 3 , 0 ) , C ( 0 , − 2 ) ,直线 l : y = − 2 3 x − 2 3 交 y 轴于点 E ,且与抛物线交于 A , D 两点, P 为抛物线上一动点(不与 A , D 重合).
(1)求抛物线的解析式;
(2)当点 P 在直线 l 下方时,过点 P 作 PM / / x 轴交 l 于点 M , PN / / y 轴交 l 于点 N ,求 PM + PN 的最大值.
(3)设 F 为直线 l 上的点,以 E , C , P , F 为顶点的四边形能否构成平行四边形?若能,求出点 F 的坐标;若不能,请说明理由.
先化简再求值:
化简:
(1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形. (2)计算中间的小正方形的面积,聪明的你能发现什么? (3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长.
老师在黑板上写出三个算式: , , ;王华接着又写了两个具有同样规律的算式: , ; (1)请你再写出两个(不同于上面算式)具有上述规律的算式; (2)用含n的代数式写出反映上述算式的规律; (3)证明这个规律的正确性.
若. 求:(1)、的值; (2)的平方根.