如图,抛物线 y = 2 3 x 2 + bx + c 经过点 B ( 3 , 0 ) , C ( 0 , − 2 ) ,直线 l : y = − 2 3 x − 2 3 交 y 轴于点 E ,且与抛物线交于 A , D 两点, P 为抛物线上一动点(不与 A , D 重合).
(1)求抛物线的解析式;
(2)当点 P 在直线 l 下方时,过点 P 作 PM / / x 轴交 l 于点 M , PN / / y 轴交 l 于点 N ,求 PM + PN 的最大值.
(3)设 F 为直线 l 上的点,以 E , C , P , F 为顶点的四边形能否构成平行四边形?若能,求出点 F 的坐标;若不能,请说明理由.
化简(1、2小题每题3分,第3、4每小题5分,共计16分) (1)2x2y-2xy-4xy2+xy+4x2y-3xy2 (2)-6ab2-[a2b+2(a2b-3ab2)] (3)若A=,B=,求:当时,的值. (4)已知,求代数式的值.
把下列各数在数轴上表示出来,并按从小到大的顺序用“<”号连起来.,,,0,,.
(1)一个两位数,十位上的数字为a,个位上的数字为b,把这个两位数的十位上的数字与个数上的数字对调后得到一个新的两位数。新的两位数与原来的两位数之和是11的倍数吗?说说你的理由。(2)任意写一个三位数(个位上的数字不为零),把这个三位数的百位上的数字与个位上的数字对调后得到一个新的三位数(三位数的十位上的数字保持不变),如果把这两个三位数中的较大的三位数减去较小的三位数,那么请你猜一猜这两个三位数之差一定是哪几个数的倍数(1的倍数除外)?说说你的理由。
为了能有效地使用电力资源,跃进花园小区实行居民峰谷用电,居民家庭在峰时段(上午8:00—晚上21:00)用电的电价为0.55元/度,谷时段(晚上21:00—次日晨8:00)用电的电价为0.35元/度. (1)若朱老师家某月用电100度,其中峰时段用电度,这个月应缴纳电费 度;当朱老师家峰时段用电60度时,求应缴纳电费. (2)朱老师生活节俭,每天早晨5:30起身后立即用额定功率1500瓦的电水壶烧水,10分钟能烧开一壶水。问朱老师家一年内用电水壶烧水共耗电多少度?能节省电费多少元?(一年按实际烧水360天计算,1度=1千瓦.时)
股市交易中每买、卖一次需交0.75%的各种费用,王老师以每股10元的价格买入某股票股,发现股票上涨到每股16元时立即全部抛出.(1)王老师实际盈利多少元?(结果用单项式表示)(2)若王老师买入1000股,则他盈利了多少元?