(1)一个两位数,十位上的数字为a,个位上的数字为b,把这个两位数的十位上的数字与个数上的数字对调后得到一个新的两位数。新的两位数与原来的两位数之和是11的倍数吗?说说你的理由。(2)任意写一个三位数(个位上的数字不为零),把这个三位数的百位上的数字与个位上的数字对调后得到一个新的三位数(三位数的十位上的数字保持不变),如果把这两个三位数中的较大的三位数减去较小的三位数,那么请你猜一猜这两个三位数之差一定是哪几个数的倍数(1的倍数除外)?说说你的理由。
如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
空气质量的优劣直接影响着人们的身体健康.天水市某校兴趣小组,于2014年5月某一周,对天水市区的空气质量指数(AQI)进行监测,监测结果如图.请你回答下列问题:(1)这一周空气质量指数的极差、众数分别是多少?(2)当0≤AQI≤50时,空气质量为优.这一周空气质量为优的频率是多少?(3)根据以上信息,谈谈你对天水市区空气质量的看法.
根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M距羲皇大道l(直线)的距离MN为30米(如图所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.(1)计算AB的长度.(2)通过计算判断此车是否超速.
如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.