如图,四边形 ABCD 被 AC 与 BD 分成甲、乙、丙、丁 4 个三角形,已知 BE = 80 cm , CE = 60 cm , DE = 40 cm , AE = 30 cm ,问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?
(·嘉兴市 第23题 12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价-成本)
(·嘉兴市 第20题 8分)如图,直线y=2x与反比例函数 (k≠0,x>0)的图像交于点A(1,a),点B是此反比例函数图形上任意一点(不与点A重合),BC⊥x轴于点C. (1)求k的值. (2)求△OBC的面积.
(·湖州市 第19题 6分)已知y是x的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式.
(·杭州市 第23题 12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5小时与乙相遇,……,请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式(2)当20<y<30时,求t的取值范围(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象(4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?
(·杭州市 第20题 10分)设函数y=(x−1)[(k−1)x+(k−3)](k是常数)(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象(2)根据图象,写出你发现的一条结论(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值: