初中数学

如图1,抛物线 y = - x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,已知点 B 坐标为 ( 3 , 0 ) ,点 C 坐标为 ( 0 , 3 )

(1)求抛物线的表达式;

(2)点 P 为直线 BC 上方抛物线上的一个动点,当 ΔPBC 的面积最大时,求点 P 的坐标;

(3)如图2,点 M 为该抛物线的顶点,直线 MD x 轴于点 D ,在直线 MD 上是否存在点 N ,使点 N 到直线 MC 的距离等于点 N 到点 A 的距离?若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年四川省眉山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 经过 A ( - 2 , 0 ) B ( 4 , 0 ) C ( 0 , 4 ) 三点.

(1)求该抛物线的解析式;

(2)经过点 B 的直线交 y 轴于点 D ,交线段 AC 于点 E ,若 BD = 5 DE

①求直线 BD 的解析式;

②已知点 Q 在该抛物线的对称轴 l 上,且纵坐标为1,点 P 是该抛物线上位于第一象限的动点,且在 l 右侧,点 R 是直线 BD 上的动点,若 ΔPQR 是以点 Q 为直角顶点的等腰直角三角形,求点 P 的坐标.

来源:2020年四川省泸州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c 与两坐标轴相交于点 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) D 是抛物线的顶点, E 是线段 AB 的中点.

(1)求抛物线的解析式,并写出 D 点的坐标;

(2) F ( x , y ) 是抛物线上的动点:

①当 x > 1 y > 0 时,求 ΔBDF 的面积的最大值;

②当 AEF = DBE 时,求点 F 的坐标.

来源:2018年湖南省娄底市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c 的图象经过 ( - 2 , 1 ) ( 2 , - 3 ) 两点.

(1)求 b 的值;

(2)当 c > - 1 时,该函数的图象的顶点的纵坐标的最小值是  1 

(3)设 ( m , 0 ) 是该函数的图象与 x 轴的一个公共点.当 - 1 < m < 3 时,结合函数的图象,直接写出 a 的取值范围.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 6 x 轴相交于 A B 两点,与 y 轴相交于点 C OA = 2 OB = 4 ,直线 l 是抛物线的对称轴,在直线 l 右侧的抛物线上有一动点 D ,连接 AD BD BC CD

(1)求抛物线的函数表达式;

(2)若点 D x 轴的下方,当 ΔBCD 的面积是 9 2 时,求 ΔABD 的面积;

(3)在(2)的条件下,点 M x 轴上一点,点 N 是抛物线上一动点,是否存在点 N ,使得以点 B D M N 为顶点,以 BD 为一边的四边形是平行四边形,若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c 的图象过 O ( 0 , 0 ) A ( 1 , 0 ) B ( 3 2 3 2 ) 三点.

(1)求二次函数的解析式;

(2)若线段 OB 的垂直平分线与 y 轴交于点 C ,与二次函数的图象在 x 轴上方的部分相交于点 D ,求直线 CD 的解析式;

(3)在直线 CD 下方的二次函数的图象上有一动点 P ,过点 P PQ x 轴,交直线 CD Q ,当线段 PQ 的长最大时,求点 P 的坐标.

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = 1 3 x 2 + bx + c 的图象经过平行四边形 ABCD 的顶点 B D ( 5 , 2 ) DE x 轴,垂足为点 E .点 A y 轴正半轴上,点 B x 轴负半轴上,点 C x 轴正半轴上,且 tan BAO = 1 2

(1)求二次函数的表达式,并判断点 C 是否在该函数图象上;

(2)点 F 是线段 AD 上一点,在线段 AD 下方作 HFK = 90 °

①当点 F 运动时,使 HFK 的一边 FH 始终过点 O ,另一边 FK 交射线 DE 于点 N ,(不含点 D N 重合的情形)设 AF = n DN = m ,求 m 关于 n 的函数关系式,并求出 m 的取值范围.

②当 AF = 1 时,将 HFK 绕点 F 旋转,一条边 FH 交线段 OA 于点 P ,另一条边 FK 交线段 OE 于点 Q ,连接 PQ ,以 PQ 为直径作 M ,设圆心 M 的坐标为 ( x , y ) ,求 y x 之间的函数关系式,并直接写出点 P 从点 O 运动到点 A 时圆心 M 运动的路径长.

来源:2016年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c x 轴交于 A ( - 1 , 0 ) B ( 5 , 0 ) 两点, C 为抛物线的顶点,抛物线的对称轴交 x 轴于点 D ,连结 BC ,且 tan CBD = 4 3 ,如图所示.

(1)求抛物线的解析式;

(2)设 P 是抛物线的对称轴上的一个动点.

①过点 P x 轴的平行线交线段 BC 于点 E ,过点 E EF PE 交抛物线于点 F ,连结 FB FC ,求 ΔBCF 的面积的最大值;

②连结 PB ,求 3 5 PC + PB 的最小值.

来源:2020年四川省乐山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,直线 y = kx + 3 分别交 x 轴、 y 轴于 A B 两点,经过 A B 两点的抛物线 y = - x 2 + bx + c x 轴的正半轴相交于点 C ( 1 , 0 )

(1)求抛物线的解析式;

(2)若 P 为线段 AB 上一点, APO = ACB ,求 AP 的长;

(3)在(2)的条件下,设 M y 轴上一点,试问:抛物线上是否存在点 N ,使得以 A P M N 为顶点的四边形为平行四边形?若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年四川省甘孜州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 + 2 x + 8 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C

(1)求点 B C 的坐标;

(2)设点 C ' 与点 C 关于该抛物线的对称轴对称.在 y 轴上是否存在点 P ,使 ΔPCC ' ΔPOB 相似,且 PC PO 是对应边?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = m x 2 + ( m 2 + 3 ) x - ( 6 m + 9 ) x 轴交于点 A B ,与 y 轴交于点 C ,已知 B ( 3 , 0 )

(1)求 m 的值和直线 BC 对应的函数表达式;

(2) P 为抛物线上一点,若 S ΔPBC = S ΔABC ,请直接写出点 P 的坐标;

(3) Q 为抛物线上一点,若 ACQ = 45 ° ,求点 Q 的坐标.

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,点 A 的坐标是 ( 0 , - 2 ) ,在 x 轴上任取一点 M ,连接 AM ,分别以点 A 和点 M 为圆心,大于 1 2 AM 的长为半径作弧,两弧相交于 G H 两点,作直线 GH ,过点 M x 轴的垂线 l 交直线 GH 于点 P .根据以上操作,完成下列问题.

探究:

(1)线段 PA PM 的数量关系为    ,其理由为:   

(2)在 x 轴上多次改变点 M 的位置,按上述作图方法得到相应点 P 的坐标,并完成下列表格:

M 的坐标

( - 2 , 0 )

( 0 , 0 )

( 2 , 0 )

( 4 , 0 )

P 的坐标

  

( 0 , - 1 )

( 2 , - 2 )

  

猜想:

(3)请根据上述表格中 P 点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线 L ,猜想曲线 L 的形状是   

验证:

(4)设点 P 的坐标是 ( x , y ) ,根据图1中线段 PA PM 的关系,求出 y 关于 x 的函数解析式.

应用:

(5)如图3,点 B ( - 1 , 3 ) C ( 1 , 3 ) ,点 D 为曲线 L 上任意一点,且 BDC < 30 ° ,求点 D 的纵坐标 y D 的取值范围.

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 - 2 ax - 3 a ( a 0 ) x 轴交于点 A B .与 y 轴交于点 C .连接 AC BC .已知 ΔABC 的面积为2.

(1)求抛物线的解析式;

(2)平行于 x 轴的直线与抛物线从左到右依次交于 P Q 两点.过 P Q x 轴作垂线,垂足分别为 G H .若四边形 PGHQ 为正方形,求正方形的边长;

(3)如图2,平行于 y 轴的直线交抛物线于点 M ,交 x 轴于点 N ( 2 , 0 ) .点 D 是抛物线上 A M 之间的一动点,且点 D 不与 A M 重合,连接 DB MN 于点 E .连接 AD 并延长交 MN 于点 F .在点 D 运动过程中, 3 NE + NF 是否为定值?若是,求出这个定值;若不是,请说明理由.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,抛物线的顶点为 A ( h , - 1 ) ,与 y 轴交于点 B ( 0 , - 1 2 ) ,点 F ( 2 , 1 ) 为其对称轴上的一个定点.

(1)求这条抛物线的函数解析式;

(2)已知直线 l 是过点 C ( 0 , - 3 ) 且垂直于 y 轴的定直线,若抛物线上的任意一点 P ( m , n ) 到直线 l 的距离为 d ,求证: PF = d

(3)已知坐标平面内的点 D ( 4 , 3 ) ,请在抛物线上找一点 Q ,使 ΔDFQ 的周长最小,并求此时 ΔDFQ 周长的最小值及点 Q 的坐标.

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,已知抛物线 y = a x 2 + bx + c x 轴交于 A ( - 1 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 2 )

(1)求抛物线的函数表达式;

(2)如图1,点 D 为第四象限抛物线上一点,连接 AD BC 交于点 E ,连接 BD ,记 ΔBDE 的面积为 S 1 ΔABE 的面积为 S 2 ,求 S 1 S 2 的最大值;

(3)如图2,连接 AC BC ,过点 O 作直线 l / / BC ,点 P Q 分别为直线 l 和抛物线上的点.试探究:在第一象限是否存在这样的点 P Q ,使 ΔPQB ΔCAB .若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.

来源:2020年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题