如图,抛物线 y = a x 2 + bx + c 与两坐标轴相交于点 A ( − 1 , 0 ) 、 B ( 3 , 0 ) 、 C ( 0 , 3 ) , D 是抛物线的顶点, E 是线段 AB 的中点.
(1)求抛物线的解析式,并写出 D 点的坐标;
(2) F ( x , y ) 是抛物线上的动点:
①当 x > 1 , y > 0 时,求 ΔBDF 的面积的最大值;
②当 ∠ AEF = ∠ DBE 时,求点 F 的坐标.
计算: (1); (2)xm+15•xm﹣1(m是大于1的整数); (3)(﹣x)•(﹣x)6; (4)﹣m3•m4.
已知am=3,an=21,求am+n的值.
宇宙空间的年龄通常以光年作单位,1光年是光在一年内通过的距离,如果光的速度为每秒3×107千米,一年约为3.2×107秒,那么1光年约为多少千米?
为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.
如图,M、N是平行四边形ABCD对角线BD上两点。 (1)若BM=MN=DN,求证:四边形AMCN为平行四边形; (2)若M、N为对角线BD上的动点(均可与端点重合),设BD=12cm,点M由点B向点D匀速运动,速度为2(cm/s),同时点N由点D向点B匀速运动,速度为 a(cm/s),运动时间为t(s)。若要使四边形AMCN为平行四边形,求a的值及t的取值范围。