如图,抛物线 y = a x 2 + bx - 6 与 x 轴相交于 A , B 两点,与 y 轴相交于点 C , OA = 2 , OB = 4 ,直线 l 是抛物线的对称轴,在直线 l 右侧的抛物线上有一动点 D ,连接 AD , BD , BC , CD .
(1)求抛物线的函数表达式;
(2)若点 D 在 x 轴的下方,当 ΔBCD 的面积是 9 2 时,求 ΔABD 的面积;
(3)在(2)的条件下,点 M 是 x 轴上一点,点 N 是抛物线上一动点,是否存在点 N ,使得以点 B , D , M , N 为顶点,以 BD 为一边的四边形是平行四边形,若存在,求出点 N 的坐标;若不存在,请说明理由.
已知:如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为4,AB=8.求sinA的值.
已知:如图,点A,C,D,B在同一条直线上,AC=BD,AE=BF,∠A=∠B.求证:∠E=∠F.
(1)解方程组: (2)化简:
如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线. (1)若l:y=-2x+2,则P表示的函数解析式为;若P:y=-x2-3x+4, 则l表示的函数解析式为 . (2)求P的对称轴(用含m,n的代数式表示); (3)如图②,若l:y=-2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标; (4)如图③,若l:y=mx-4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.
四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG; (3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.