已知是的一个内角,抛物线的顶点在轴上.(1)求的度数;(2) 若求:AB边的长.
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程: 将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°, 求证:a2+b2=c2 证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a. ∵S四边形ADCB=S△ACD+S△ABC=b2+ab. 又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a). ∴b2+ab=c2+a(b﹣a),∴a2+b2=c2. 请参照上述证法,利用图2完成下面的证明. 将两个全等的直角三角形按图2所示摆放,其中∠ABC=90°. 求证:a2+b2=c2. 证明:
如图,在8×8网格纸中,每个小正方形的边长都为1. (1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(-4,4),(-1,3),并写出点B的坐标为 ; (2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标; (3)在y轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
按下列要求确定点的坐标. (1)已知点A在第四象限,且到x轴距离为1,到y轴距离为5,求点A的坐标; (2)已知点B(a-1,-2a+8),且点B在第一、三象限的角平分线上,求a; (3)试判断(1)、(2)中的点A、B与坐标原点O围成的△ABO是何种特殊三角形?并说明理由.
在弹性限度内,弹簧长度y(cm)是所挂物体的质量x(g)的一次函数.已知一根弹簧挂10g物体时的长度为11cm,挂30g物体时的长度为15cm. (1)求y与x的函数表达式; (2)当所挂物体的质量为14g时,求弹簧的长度.
如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上. (1)△BEF是等腰三角形吗?试说明理由; (2)若AB=8,DE=10,求CF的长度.