如图,已知抛物线 y = a x 2 + bx + c 经过 A ( - 2 , 0 ) , B ( 4 , 0 ) , C ( 0 , 4 ) 三点.
(1)求该抛物线的解析式;
(2)经过点 B 的直线交 y 轴于点 D ,交线段 AC 于点 E ,若 BD = 5 DE .
①求直线 BD 的解析式;
②已知点 Q 在该抛物线的对称轴 l 上,且纵坐标为1,点 P 是该抛物线上位于第一象限的动点,且在 l 右侧,点 R 是直线 BD 上的动点,若 ΔPQR 是以点 Q 为直角顶点的等腰直角三角形,求点 P 的坐标.
在Rt△ABC中,∠ACB=90°,AB=2AC,如图所示,求∠A、∠B的度数.
如图(1),在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB. (1)求证:△BCP≌△DCP; (2)求证:∠DPE=∠ABC; (3)把正方形ABCD改为菱形,其他条件不变,如图(2),如果∠ABC=58°,那么∠DPE=________度.
如图,一根长2a的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为点P,若木棍A端沿墙下滑,且B端沿地面向右滑行. (1)试判断木棍滑动过程中,点P到点O的距离是否变化?并简述理由. (2)在木棍滑动过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求面积的最大值.
已知:如图,四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F. (1)求证:△AOE≌△COF; (2)若∠EOD=30°,求CE的长.
如图,已知E,F是四边形ABCD对角线AC上的两点,AE=CF,BE=FD,BE∥FD. 求证:四边形ABCD是平行四边形.