如图,二次函数y=x2+bx+c经过点(-1,0)和点(0,-3).(1)求二次函数的表达式;(2)如果一次函数y=4x+m的图象与二次函数的图象有且只有一个公共点,求m的值和该公共点的坐标;(3)将二次函数图象y轴左侧部分沿y轴翻折,翻折后得到的图象与原图象剩余部分组成一个新的图象,该图象记为G,如果直线y=4x+n与图象G有3个公共点,求n的值.
甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7.从三个口袋各随机取出1个小球.用画树状图或列表法求:
(1)取出的3个小球上恰好有一个偶数的概率;
(2)取出的3个小球上全是奇数的概率.
用※定义一种新运算:对于任意实数 m 和 n ,规定 m ※ n = m 2 n - mn - 3 n ,如:1※ 2 = 1 2 × 2 - 1 × 2 - 3 × 2 = - 6 .
(1)求 ( - 2 ) ※ 3 ;
(2)若3※ m ⩾ - 6 ,求 m 的取值范围,并在所给的数轴上表示出解集.
从 A 处看一栋楼顶部的仰角为 α ,看这栋楼底部的俯角为 β , A 处与楼的水平距离 AD 为 90 m .若 tan α = 0 . 27 , tan β = 2 . 73 ,求这栋楼高.
解方程: 2 x - 2 = 3 x .
如图,抛物线 y = - 1 2 x 2 + bx + c 与 x 轴交于点 A ( - 1 , 0 ) 和点 B ( 4 , 0 ) ,与 y 轴交于点 C ,连接 BC ,点 P 是线段 BC 上的动点(与点 B , C 不重合),连接 AP 并延长 AP 交抛物线于点 Q ,连接 CQ , BQ ,设点 Q 的横坐标为 m .
(1)求抛物线的解析式和点 C 的坐标;
(2)当 ΔBCQ 的面积等于2时,求 m 的值;
(3)在点 P 运动过程中, PQ AP 是否存在最大值?若存在,求出最大值;若不存在,请说明理由.