初中数学

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 3 , 0 ) .与 y 轴交于点 C ( 0 , 3 )

(1)求抛物线的解析式;

(2)点 P x 轴下方的抛物线上,过点 P 的直线 y = x + m 与直线 BC 交于点 E ,与 y 轴交于点 F ,求 PE + EF 的最大值;

(3)点 D 为抛物线对称轴上一点.

①当 ΔBCD 是以 BC 为直角边的直角三角形时,求点 D 的坐标;

②若 ΔBCD 是锐角三角形,求点 D 的纵坐标的取值范围.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于点,与轴交于两点,点坐标为,抛物线的对称轴方程为

(1)求抛物线的解析式;

(2)点点出发,在线段上以每秒3个单位长度的速度向点运动,同时点点出发,在线段上以每秒1个单位长度的速度向点运动,其中一个点到达终点时,另一个点也停止运动,设的面积为,点运动时间为,试求的函数关系,并求的最大值;

(3)在点运动过程中,是否存在某一时刻,使为直角三角形?若存在,求出值;若不存在,请说明理由.

来源:2017年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,矩形 OABC 的顶点 A C 的坐标分别为 ( 4 , 0 ) ( 0 , 6 ) ,直线 AD BC 于点 D tan OAD = 2 ,抛物线 M 1 : y = a x 2 + bx ( a 0 ) A D 两点.

(1)求点 D 的坐标和抛物线 M 1 的表达式;

(2)点 P 是抛物线 M 1 对称轴上一动点,当 CPA = 90 ° 时,求所有符合条件的点 P 的坐标;

(3)如图2,点 E ( 0 , 4 ) ,连接 AE ,将抛物线 M 1 的图象向下平移 m ( m > 0 ) 个单位得到抛物线 M 2

①设点 D 平移后的对应点为点 D ' ,当点 D ' 恰好在直线 AE 上时,求 m 的值;

②当 1 x m ( m > 1 ) 时,若抛物线 M 2 与直线 AE 有两个交点,求 m 的取值范围.

来源:2017年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + c 经过平行四边形 ABCD 的顶点 A ( 0 , 3 ) B ( 1 , 0 ) D ( 2 , 3 ) ,抛物线与 x 轴的另一交点为 E .经过点 E 的直线 l 将平行四边形 ABCD 分割为面积相等的两部分,与抛物线交于另一点 F .点 P 为直线 l 上方抛物线上一动点,设点 P 的横坐标为 t

(1)求抛物线的解析式;

(2)当 t 何值时, ΔPFE 的面积最大?并求最大值的立方根;

(3)是否存在点 P 使 ΔPAE 为直角三角形?若存在,求出 t 的值;若不存在,说明理由.

来源:2017年山东省潍坊市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C

(1) b =    c =   

(2)若点 D 在该二次函数的图象上,且 S ΔABD = 2 S ΔABC ,求点 D 的坐标;

(3)若点 P 是该二次函数图象上位于 x 轴上方的一点,且 S ΔAPC = S ΔAPB ,写出点 P 的坐标.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图1,已知二次函数 y = a x 2 + bx + c ( a b c 为常数, a 0 ) 的图象过点 O ( 0 , 0 ) 和点 A ( 4 , 0 ) ,函数图象最低点 M 的纵坐标为 8 3 ,直线 l 的解析式为 y = x

(1)求二次函数的解析式;

(2)直线 l 沿 x 轴向右平移,得直线 l ' l ' 与线段 OA 相交于点 B ,与 x 轴下方的抛物线相交于点 C ,过点 C CE x 轴于点 E ,把 ΔBCE 沿直线 l ' 折叠,当点 E 恰好落在抛物线上点 E ' 时(图 2 ) ,求直线 l ' 的解析式;

(3)在(2)的条件下, l ' y 轴交于点 N ,把 ΔBON 绕点 O 逆时针旋转 135 ° 得到△ B ' ON ' P l ' 上的动点,当△ PB ' N ' 为等腰三角形时,求符合条件的点 P 的坐标.

来源:2017年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 2 x 轴交于 A B 两点,与 y 轴交于 C 点,已知 A ( 3 , 0 ) ,且 M ( 1 , 8 3 ) 是抛物线上另一点.

(1)求 a b 的值;

(2)连接 AC ,设点 P y 轴上任一点,若以 P A C 三点为顶点的三角形是等腰三角形,求 P 点的坐标;

(3)若点 N x 轴正半轴上且在抛物线内的一动点(不与 O A 重合),过点 N NH / / AC 交抛物线的对称轴于 H 点.设 ON = t ΔONH 的面积为 S ,求 S t 之间的函数关系式.

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图(1),在平面直角坐标系中,抛物线 y a x 2 + bx + 4 a 0 y轴交于点A,与x轴交于点 C (﹣ 2 0 ,且经过点B(8,4),连接ABBO,作 AM OB 于点M,将 Rt OMA 沿y轴翻折,点M的对应点为点N.解答下列问题:

(1)抛物线的解析式为             ,顶点坐标为           

(2)判断点N是否在直线AC上,并说明理由;

(3)如图(2),将图(1)中 Rt OMA 沿着OB平移后,得到 Rt DEF .若DE边在线段OB上,点F在抛物线上,连接AF,求四边形 AMEF 的面积.

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + c ( a 0 ) 的图象经过 A ( 1 , 0 ) B ( 4 , 0 ) C ( 0 , 2 ) 三点.

(1)求该二次函数的解析式;

(2)点 D 是该二次函数图象上的一点,且满足 DBA = CAO ( O 是坐标原点),求点 D 的坐标;

(3)点 P 是该二次函数图象上位于第一象限上的一动点,连接 PA 分别交 BC y 轴于点 E F ,若 ΔPEB ΔCEF 的面积分别为 S 1 S 2 ,求 S 1 S 2 的最大值.

来源:2017年四川省泸州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 经过 ΔOAB 的三个顶点,其中点 A ( 1 , 3 ) ,点 B ( 3 , 3 ) O 为坐标原点.

(1)求这条抛物线所对应的函数表达式;

(2)若 P ( 4 , m ) Q ( t , n ) 为该抛物线上的两点,且 n < m ,求 t 的取值范围;

(3)若 C 为线段 AB 上的一个动点,当点 A ,点 B 到直线 OC 的距离之和最大时,求 BOC 的大小及点 C 的坐标.

来源:2018年山东省淄博市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c 经过 A ( 0 , - 1 ) B ( 4 , 1 ) .直线 AB x 轴于点 C P 是直线 AB 下方抛物线上的一个动点.过点 P PD AB ,垂足为 D PE / / x 轴,交 AB 于点 E

(1)求抛物线的函数表达式;

(2)当 ΔPDE 的周长取得最大值时,求点 P 的坐标和 ΔPDE 周长的最大值;

(3)把抛物线 y = x 2 + bx + c 平移,使得新抛物线的顶点为(2)中求得的点 P M 是新抛物线上一点, N 是新抛物线对称轴上一点,直接写出所有使得以点 A B M N 为顶点的四边形是平行四边形的点 M 的坐标,并把求其中一个点 M 的坐标的过程写出来.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,二次函数 y 1 4 x 2 + bx + c 的图象过点 A 4 ,﹣ 4 B (﹣ 2 m ,交y轴于点 C 0 ,﹣ 4 .直线BO与抛物线相交于另一点D,连接 AB AD ,点E是线段AB上的一动点,过点E EF BD AD于点F

(1)求二次函数 y 1 4 x 2 + bx + c 的表达式;

(2)判断 AB D 的形状,并说明理由;

(3)在点E的运动过程中,直线 BD 上存在一点G,使得四边形AFGE为矩形,请判断此时 AG BD 的数量关系,并求出点E的坐标;

(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得 EPF 90 ° 的点,在抛物线的对称轴上,是否存在点Q,使得 HPQ 是以 PQH 为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,已知二次函数 y = a x 2 + 3 2 x + c ( a 0 ) 的图象与 y 轴交于点 A ( 0 , 4 ) ,与 x 轴交于点 B C ,点 C 坐标为 ( 8 , 0 ) ,连接 AB AC

(1)请直接写出二次函数 y = a x 2 + 3 2 x + c 的表达式;

(2)判断 ΔABC 的形状,并说明理由;

(3)若点 N x 轴上运动,当以点 A N C 为顶点的三角形是等腰三角形时,请写出此时点 N 的坐标;

(4)如图2,若点 N 在线段 BC 上运动(不与点 B C 重合),过点 N NM / / AC ,交 AB 于点 M ,当 ΔAMN 面积最大时,求此时点 N 的坐标.

来源:2018年山东省枣庄市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + 2 x + c x 轴交于 A ( 4 , 0 ) B ( 1 , 0 ) 两点,过点 B 的直线 y = kx + 2 3 分别与 y 轴及抛物线交于点 C D

(1)求直线和抛物线的表达式;

(2)动点 P 从点 O 出发,在 x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为 t 秒,当 t 为何值时, ΔPDC 为直角三角形?请直接写出所有满足条件的 t 的值;

(3)如图2,将直线 BD 沿 y 轴向下平移4个单位后,与 x 轴, y 轴分别交于 E F 两点,在抛物线的对称轴上是否存在点 M ,在直线 EF 上是否存在点 N ,使 DM + MN 的值最小?若存在,求出其最小值及点 M N 的坐标;若不存在,请说明理由.

来源:2018年山东省烟台市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,四边形 OABC 是平行四边形,经过 A ( - 2 , 0 ) B C 三点的抛物线 y = a x 2 + bx + 8 3 ( a < 0 ) x 轴的另一个交点为 D ,其顶点为 M ,对称轴与 x 轴交于点 E

(1)求这条抛物线对应的函数表达式;

(2)已知 R 是抛物线上的点,使得 ΔADR 的面积是 OABC 的面积的 3 4 ,求点 R 的坐标;

(3)已知 P 是抛物线对称轴上的点,满足在直线 MD 上存在唯一的点 Q ,使得 PQE = 45 ° ,求点 P 的坐标.

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题