如图1,矩形 OABC 的顶点 A , C 的坐标分别为 ( 4 , 0 ) , ( 0 , 6 ) ,直线 AD 交 BC 于点 D , tan ∠ OAD = 2 ,抛物线 M 1 : y = a x 2 + bx ( a ≠ 0 ) 过 A , D 两点.
(1)求点 D 的坐标和抛物线 M 1 的表达式;
(2)点 P 是抛物线 M 1 对称轴上一动点,当 ∠ CPA = 90 ° 时,求所有符合条件的点 P 的坐标;
(3)如图2,点 E ( 0 , 4 ) ,连接 AE ,将抛物线 M 1 的图象向下平移 m ( m > 0 ) 个单位得到抛物线 M 2 .
①设点 D 平移后的对应点为点 D ' ,当点 D ' 恰好在直线 AE 上时,求 m 的值;
②当 1 ⩽ x ⩽ m ( m > 1 ) 时,若抛物线 M 2 与直线 AE 有两个交点,求 m 的取值范围.
如图,某建筑工程队利用一面墙(墙的长度不限),用40米长的篱笆围成一个长方形的仓库. (1)求长方形的面积是150平方米,求出长方形两邻边的长; (2)能否围成面积220平方米的长方形?请说明理由.
已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根. (1)求实数m的取值范围; (2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.
已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值. (1)方程有两个相等的实数根; (2)方程有两个相反的实数根; (3)方程的一个根为0.
(6分)如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H, (1)求∠ACB的度数; (2)HE=AF.
(6分)已知:如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA,垂足为点D,PE⊥OB,垂足为点E,点M,N分别在线段OD和射线EB上,PM=PN,∠AOB=68°,求∠MPN的度数.