首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 80

如图1,已知二次函数 y = a x 2 + bx + c ( a b c 为常数, a 0 ) 的图象过点 O ( 0 , 0 ) 和点 A ( 4 , 0 ) ,函数图象最低点 M 的纵坐标为 8 3 ,直线 l 的解析式为 y = x

(1)求二次函数的解析式;

(2)直线 l 沿 x 轴向右平移,得直线 l ' l ' 与线段 OA 相交于点 B ,与 x 轴下方的抛物线相交于点 C ,过点 C CE x 轴于点 E ,把 ΔBCE 沿直线 l ' 折叠,当点 E 恰好落在抛物线上点 E ' 时(图 2 ) ,求直线 l ' 的解析式;

(3)在(2)的条件下, l ' y 轴交于点 N ,把 ΔBON 绕点 O 逆时针旋转 135 ° 得到△ B ' ON ' P l ' 上的动点,当△ PB ' N ' 为等腰三角形时,求符合条件的点 P 的坐标.

登录免费查看答案和解析

如图1,已知二次函数yax2bxc(a、b、c为常数,a≠0