如图1,已知二次函数 y = a x 2 + bx + c ( a 、 b 、 c 为常数, a ≠ 0 ) 的图象过点 O ( 0 , 0 ) 和点 A ( 4 , 0 ) ,函数图象最低点 M 的纵坐标为 − 8 3 ,直线 l 的解析式为 y = x .
(1)求二次函数的解析式;
(2)直线 l 沿 x 轴向右平移,得直线 l ' , l ' 与线段 OA 相交于点 B ,与 x 轴下方的抛物线相交于点 C ,过点 C 作 CE ⊥ x 轴于点 E ,把 ΔBCE 沿直线 l ' 折叠,当点 E 恰好落在抛物线上点 E ' 时(图 2 ) ,求直线 l ' 的解析式;
(3)在(2)的条件下, l ' 与 y 轴交于点 N ,把 ΔBON 绕点 O 逆时针旋转 135 ° 得到△ B ' ON ' , P 为 l ' 上的动点,当△ PB ' N ' 为等腰三角形时,求符合条件的点 P 的坐标.
在一次科技活动中,小明进行了模拟雷达雪描实验.如图,表盘是△ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同的旋转速度返回A、B,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处开始旋转计时,旋转1秒, 时光线AP交BC于点M,BM的长为()cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时AP与BC边交点在什么位置?若旋转2014秒,此时AP与BC边交点在什么位置?并说明理由.
小明在某商店购买商品A、B共三次,只有一次购买时,商品同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:
(1)小明以折扣价购买商品是第 次购物.(2)求商品A、B的标价.(3)若品A、B的折扣相同,问商店是打几折出售这两种商品的?
如图1,在一个不透明的袋子中装有四个球,分别标有字母A、B、C、D,这些球除了字母外完全相同,此外,有一面白色、另一面黑色、大小相同的四张正方形卡片,每张卡片两面的字母相同,分别标有字母A、B、C、D。最初,摆成如图2的样子,A、D是黑色,B、C是白色.两次操作后观察卡片的颜色。(如:第一次取出A、第二次取出B,此时卡片的颜色变成)(1)取四张卡片变成相同颜色的概率;(2)求四张卡片变成两黑两白、并恰好形成各自颜色的矩形的概率.
如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)连接AE、BE,AE与BE相等吗?请说明理由.
我市启动了第二届“美丽港城·美在悦读”全民阅读活动。为了了解市民每天的阅读时间情况,随机抽取了部分民进行调查。根据调查结果绘制如下尚不完整的频数分布表:
(1)补全表格:(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”。若我市约有500万人,请估计我市能称为“阅读爱好者”的市民有多少万人?