初中数学

如图,已知二次函数 y = a x 2 ( 2 a 3 4 ) x + 3 的图象经过点 A ( 4 , 0 ) ,与 y 轴交于点 B .在 x 轴上有一动点 C ( m 0 ) ( 0 < m < 4 ) ,过点 C x 轴的垂线交直线 AB 于点 E ,交该二次函数图象于点 D

(1)求 a 的值和直线 AB 的解析式;

(2)过点 D DF AB 于点 F ,设 ΔACE ΔDEF 的面积分别为 S 1 S 2 ,若 S 1 = 4 S 2 ,求 m 的值;

(3)点 H 是该二次函数图象上位于第一象限的动点,点 G 是线段 AB 上的动点,当四边形 DEGH 是平行四边形,且 DEGH 周长取最大值时,求点 G 的坐标.

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知直线 y = x + 3 x 轴、 y 轴分别相交于 A B 两点,抛物线 y = x 2 + bx + c 经过 A B 两点,点 M 在线段 OA 上,从 O 点出发,向点 A 以每秒1个单位的速度匀速运动;同时点 N 在线段 AB 上,从点 A 出发,向点 B 以每秒 2 个单位的速度匀速运动,连接 MN ,设运动时间为 t

(1)求抛物线解析式;

(2)当 t 为何值时, ΔAMN 为直角三角形;

(3)过 N NH / / y 轴交抛物线于 H ,连接 MH ,是否存在点 H 使 MH / / AB ,若存在,求出点 H 的坐标,若不存在,请说明理由.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 ( 3 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ,对称轴 l x 轴交于点 F ,直线 m / / AC ,点 E 是直线 AC 上方抛物线上一动点,过点 E EH m ,垂足为 H ,交 AC 于点 G ,连接 AE EC CH AH

(1)抛物线的解析式为   

(2)当四边形 AHCE 面积最大时,求点 E 的坐标;

(3)在(2)的条件下,连接 EF ,点 P x 轴上一动点,在抛物线上是否存在点 Q ,使得以 F E P Q 为顶点,以 EF 为一边的四边形是平行四边形.若存在,请直接写出点 Q 的坐标;若不存在,说明理由.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点 ( A B 的左侧),且 OA = 3 OB = 1 ,与 y 轴交于 C ( 0 , 3 ) ,抛物线的顶点坐标为 D ( 1 , 4 )

(1)求 A B 两点的坐标;

(2)求抛物线的解析式;

(3)过点 D 作直线 DE / / y 轴,交 x 轴于点 E ,点 P 是抛物线上 B D 两点间的一个动点(点 P 不与 B D 两点重合), PA PB 与直线 DE 分别交于点 F G ,当点 P 运动时, EF + EG 是否为定值?若是,试求出该定值;若不是,请说明理由.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax + 3 ( a 0 )

(1)求抛物线的对称轴;

(2)把抛物线沿 y 轴向下平移 3 | a | 个单位,若抛物线的顶点落在 x 轴上,求 a 的值;

(3)设点 P ( a , y 1 ) Q ( 2 , y 2 ) 在抛物线上,若 y 1 > y 2 ,求 a 的取值范围.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面 OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽 OA = 8 m ,桥拱顶点 B 到水面的距离是 4 m

(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;

(2)一只宽为 1 . 2 m 的打捞船径直向桥驶来,当船驶到桥拱下方且距 O 0 . 4 m 时,桥下水位刚好在 OA 处,有一名身高 1 . 68 m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).

(3)如图③,桥拱所在的函数图象是抛物线 y = a x 2 + bx + c ( a 0 ) ,该抛物线在 x 轴下方部分与桥拱 OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移 m ( m > 0 ) 个单位长度,平移后的函数图象在 8 x 9 时, y 的值随 x 值的增大而减小,结合函数图象,求 m 的取值范围.

来源:2021年贵州省贵阳市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

已知抛物线的顶点为 ( 2 , 4 ) 并经过点 ( 2 , 4 ) ,点 A 在抛物线的对称轴上并且纵坐标为 3 2 ,抛物线交 y 轴于点 N .如图1.

(1)求抛物线的解析式;

(2)点 P 为抛物线对称轴上的一点, ΔANP 为等腰三角形,求点 P 的坐标;

(3)如图2,点 B 为直线 y = 2 上的一个动点,过点 B 的直线 l AB 垂直

①求证:直线 l 与抛物线总有两个交点;

②设直线 l 与抛物线交于点 C D (点 C 在左侧),分别过点 C D 作直线 y = 2 的垂线,垂足分别为 E F .求 EF 的长.

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 1 2 x 2 + bx + c 与直线 y = 1 2 x + 3 交于 A B 两点,交 x 轴于 C D 两点,连接 AC BC ,已知 A ( 0 , 3 ) C ( 3 , 0 )

(1)求此抛物线的解析式;

(2)在抛物线对称轴 l 上找一点 M ,使 | MB MD | 的值最大,并求出这个最大值;

(3)点 P y 轴右侧抛物线上一动点,连接 PA ,过点 P PQ PA y 轴于点 Q ,问:是否存在点 P ,使得以 A P Q 为顶点的三角形与 ΔABC 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.

来源:2018年四川省广安市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线 C 1 : y = x 2 2 x 与抛物线 C 2 : y = a x 2 + bx 开口大小相同、方向相反,它们相交于 O C 两点,且分别与 x 轴的正半轴交于点 B ,点 A OA = 2 OB

(1)求抛物线 C 2 的解析式;

(2)在抛物线 C 2 的对称轴上是否存在点 P ,使 PA + PC 的值最小?若存在,求出点 P 的坐标,若不存在,说明理由;

(3) M 是直线 OC 上方抛物线 C 2 上的一个动点,连接 MO MC M 运动到什么位置时, ΔMOC 面积最大?并求出最大面积.

来源:2019年贵州省遵义市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + 3 的图象与 x 轴分别交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴交于点 C

(1)求此二次函数解析式;

(2)点 D 为抛物线的顶点,试判断 ΔBCD 的形状,并说明理由;

(3)将直线 BC 向上平移 t ( t > 0 ) 个单位,平移后的直线与抛物线交于 M N 两点(点 M y 轴的右侧),当 ΔAMN 为直角三角形时,求 t 的值.

来源:2018年四川省甘孜州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在等腰直角三角形 ABC 中, BAC = 90 ° ,点 A x 轴上,点 B y 轴上,点 C ( 3 , 1 ) ,二次函数 y = 1 3 x 2 + bx 3 2 的图象经过点 C

(1)求二次函数的解析式,并把解析式化成 y = a ( x h ) 2 + k 的形式;

(2)把 ΔABC 沿 x 轴正方向平移,当点 B 落在抛物线上时,求 ΔABC 扫过区域的面积;

(3)在抛物线上是否存在异于点 C 的点 P ,使 ΔABP 是以 AB 为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点 P 的坐标;如果不存在,请说明理由.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx 1 x 轴的交点为 A ( 1 , 0 ) B ( 2 , 0 ) ,且与 y 轴交于 C 点.

(1)求该抛物线的表达式;

(2)点 C 关于 x 轴的对称点为 C 1 M 是线段 B C 1 上的一个动点(不与 B C 1 重合), ME x 轴, MF y 轴,垂足分别为 E F ,当点 M 在什么位置时,矩形 MFOE 的面积最大?说明理由.

(3)已知点 P 是直线 y = 1 2 x + 1 上的动点,点 Q 为抛物线上的动点,当以 C C 1 P Q 为顶点的四边形为平行四边形时,求出相应的点 P 和点 Q 的坐标.

来源:2019年贵州省铜仁市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 4 , 0 ) ,与 y 轴交于点 C ( 0 , 4 )

(1)求抛物线的解析式;

(2)点 P x 轴下方的抛物线上,过点 P 的直线 y = x + m 与直线 BC 交于点 E ,与 y 轴交于点 F ,求 PE + EF 的最大值;

(3)点 D 为抛物线对称轴上一点.

①当 ΔBCD 是以 BC 为直角边的直角三角形时,直接写出点 D 的坐标;

②若 ΔBCD 是锐角三角形,直接写出点 D 的纵坐标 n 的取值范围.

来源:2018年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,抛物线经过原点 O ( 0 , 0 ) ,点 A ( 1 , 1 ) ,点 B ( 7 2 , 0 )

(1)求抛物线解析式;

(2)连接 OA ,过点 A AC OA 交抛物线于 C ,连接 OC ,求 ΔAOC 的面积;

(3)点 M y 轴右侧抛物线上一动点,连接 OM ,过点 M MN OM x 轴于点 N .问:是否存在点 M ,使以点 O M N 为顶点的三角形与(2)中的 ΔAOC 相似,若存在,求出点 M 的坐标;若不存在,说明理由.

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题