已知抛物线的顶点为 ( 2 , − 4 ) 并经过点 ( − 2 , 4 ) ,点 A 在抛物线的对称轴上并且纵坐标为 − 3 2 ,抛物线交 y 轴于点 N .如图1.
(1)求抛物线的解析式;
(2)点 P 为抛物线对称轴上的一点, ΔANP 为等腰三角形,求点 P 的坐标;
(3)如图2,点 B 为直线 y = − 2 上的一个动点,过点 B 的直线 l 与 AB 垂直
①求证:直线 l 与抛物线总有两个交点;
②设直线 l 与抛物线交于点 C 、 D (点 C 在左侧),分别过点 C 、 D 作直线 y = − 2 的垂线,垂足分别为 E 、 F .求 EF 的长.
如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.
如图,矩形ABCD是供一辆机动车停放的车位示意图,已知BC=2m,CD=5.4m,∠DCF=30°,请你计算车位所占的宽度EF约为多少米?(,结果保留两位有效数字.)
先化简,再求值:,其中a=.
如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O) (1)求此抛物线的解析式. (2)过点P作CB所在直线的垂线,垂足为点R, ①求证:PF=PR; ②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由; ③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.
如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<)秒.解答如下问题: (1)当t为何值时,PQ∥BO? (2)设△AQP的面积为S, ①求S与t之间的函数关系式,并求出S的最大值; ②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.