如图,抛物线 y = − x 2 + bx + c 与 x 轴交于 ( − 3 , 0 ) 、 B ( 1 , 0 ) 两点,与 y 轴交于点 C ,对称轴 l 与 x 轴交于点 F ,直线 m / / AC ,点 E 是直线 AC 上方抛物线上一动点,过点 E 作 EH ⊥ m ,垂足为 H ,交 AC 于点 G ,连接 AE 、 EC 、 CH 、 AH .
(1)抛物线的解析式为 ;
(2)当四边形 AHCE 面积最大时,求点 E 的坐标;
(3)在(2)的条件下,连接 EF ,点 P 是 x 轴上一动点,在抛物线上是否存在点 Q ,使得以 F 、 E 、 P 、 Q 为顶点,以 EF 为一边的四边形是平行四边形.若存在,请直接写出点 Q 的坐标;若不存在,说明理由.
如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?说明理由.
如图,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).
如图,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.
用任意2个全等的三角形能拼成平行四边形吗?自己画两个全等的三角形试一试,把你拼的图形画出来,说明理由.
如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且,. 理解与作图: (1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH. 计算与猜想: (2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值? 启发与证明: (3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.