已知抛物线 y = a x 2 - 2 ax + 3 ( a ≠ 0 ) .
(1)求抛物线的对称轴;
(2)把抛物线沿 y 轴向下平移 3 | a | 个单位,若抛物线的顶点落在 x 轴上,求 a 的值;
(3)设点 P ( a , y 1 ) , Q ( 2 , y 2 ) 在抛物线上,若 y 1 > y 2 ,求 a 的取值范围.
(本题10分)已知:如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.CM⊥AE,垂足是F, 交AD于N,交AB于M,连接ME。 (1)求证:ME⊥BC; (2)若AB=,试求ME的长。
(本题8分) 求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通过计算器求. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)(2)运用你发现的规律,探究下列问题:已知1.435,求下列各数的算术平方根:①0.0206 ; ②20600 ; (3)根据上述探究过程类比研究一个数的立方根已知1.260,则
(本题8分)若一次函数与(,的图像相交于点,.(1)求、的值;(2)若点,在函数的图像上,求的值。
已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离。(友情提醒:注意考虑P、Q的位置)
(1)如图1,正方形ABCD和CEFG的边长分别为m、n,用含m、n的代数式表示△AEG的面积。(2)如图2,正方形ABCD和CEFG的边长分别为m、n,用含m、n的代数式表示△DBF的面积。(3)如图,正方形ABCD、正方形CEFG和正方形MNHF的位置如图所示,点G在线段AN上,已知正方形CEFG的边长为6,则△AEN的面积为 (请直接写出结果,不需要过程)