已知:如图,抛物线 与坐标轴分别交于点 , , ,点 是线段 上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点 运动到什么位置时, 的面积有最大值?
(3)过点 作 轴的垂线,交线段 于点 ,再过点 做 轴交抛物线于点 ,连接 ,请问是否存在点 使 为等腰直角三角形?若存在,求出点 的坐标;若不存在,说明理由.
在平面直角坐标系 中,已知抛物线的顶点坐标为 ,且经过点 ,如图,直线 与抛物线交于 、 两点,直线 为 .
(1)求抛物线的解析式;
(2)在 上是否存在一点 ,使 取得最小值?若存在,求出点 的坐标;若不存在,请说明理由.
(3)知 , 为平面内一定点, 为抛物线上一动点,且点 到直线 的距离与点 到点 的距离总是相等,求定点 的坐标.
如图,抛物线 的对称轴为直线 ,抛物线与 轴交于点 和点 ,与 轴交于点 ,且点 的坐标为 .
(1)求抛物线的函数表达式;
(2)将抛物线 图象 轴下方部分沿 轴向上翻折,保留抛物线在 轴上的点和 轴上方图象,得到的新图象与直线 恒有四个交点,从左到右四个交点依次记为 , , , .当以 为直径的圆过点 时,求 的值;
(3)在抛物线 上,当 时, 的取值范围是 ,请直接写出 的取值范围.
如图,已知抛物线 的对称轴是直线 ,且与 轴相交于 , 两点 点在 点右侧)与 轴交于 点.
(1)求抛物线的解析式和 、 两点的坐标;
(2)若点 是抛物线上 、 两点之间的一个动点(不与 、 重合),则是否存在一点 ,使 的面积最大.若存在,请求出 的最大面积;若不存在,试说明理由;
(3)若 是抛物线上任意一点,过点 作 轴的平行线,交直线 于点 ,当 时,求 点的坐标.
如图,对称轴为直线 的抛物线 与 轴交于 , 、 , 两点,与 轴交于 点,且 .
(1)求抛物线的解析式;
(2)抛物线顶点为 ,直线 交 轴于 点;
①设点 为线段 上一点(点 不与 、 两点重合),过点 作 轴的垂线与抛物线交于点 ,求 面积的最大值;
②在线段 上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 与 轴交于点 和点 ,交 轴于点 ,过点 作 轴,交抛物线于点 .
(1)求抛物线的解析式;
(2)若直线 与线段 、 分别交于 、 两点,过 点作 轴于点 ,过点 作 轴于点 ,求矩形 的最大面积;
(3)若直线 将四边形 分成左、右两个部分,面积分别为 , ,且 ,求 的值.
如图,抛物线 与直线 相交于点 和点 .
(1)求 和 的值;
(2)求点 的坐标,并结合图象写出不等式 的解集;
(3)点 是直线 上的一个动点,将点 向左平移3个单位长度得到点 ,若线段 与抛物线只有一个公共点,直接写出点 的横坐标 的取值范围.
如图,抛物线顶点 ,与 轴交于点 ,与 轴交于点 , .
(1)求抛物线的解析式.
(2) 是抛物线上除点 外一点, 与 的面积相等,求点 的坐标.
(3)若 , 为抛物线上两个动点,分别过点 , 作直线 的垂线段,垂足分别为 , .是否存在点 , 使四边形 为正方形?如果存在,求正方形 的边长;如果不存在,请说明理由.
如图,已知两直线 , 分别经过点 ,点 ,且两条直线相交于 轴的正半轴上的点 ,当点 的坐标为 时,恰好有 ,经过点 、 、 的抛物线的对称轴与 、 、 轴分别交于点 、 、 , 为抛物线的顶点.
(1)求抛物线的函数解析式;
(2)试说明 与 的数量关系?并说明理由;
(3)若直线 绕点 旋转时,与抛物线的另一个交点为 ,当 为等腰三角形时,请直接写出点 的坐标.
如图,已知抛物线 过点 , 和点 , .过点 作直线 轴,交 轴于点 .
(1)求抛物线的解析式;
(2)在抛物线上取一点 ,过点 作直线 的垂线,垂足为 .连接 ,使得以 , , 为顶点的三角形与 相似,求出对应点 的坐标;
(3)抛物线上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知二次函数 的图象经过点 ,与 轴交于点 .在 轴上有一动点 , ,过点 作 轴的垂线交直线 于点 ,交该二次函数图象于点 .
(1)求 的值和直线 的解析式;
(2)过点 作 于点 ,设 , 的面积分别为 , ,若 ,求 的值;
(3)点 是该二次函数图象上位于第一象限的动点,点 是线段 上的动点,当四边形 是平行四边形,且 周长取最大值时,求点 的坐标.
已知直线 与 轴、 轴分别相交于 、 两点,抛物线 经过 、 两点,点 在线段 上,从 点出发,向点 以每秒1个单位的速度匀速运动;同时点 在线段 上,从点 出发,向点 以每秒 个单位的速度匀速运动,连接 ,设运动时间为 秒
(1)求抛物线解析式;
(2)当 为何值时, 为直角三角形;
(3)过 作 轴交抛物线于 ,连接 ,是否存在点 使 ,若存在,求出点 的坐标,若不存在,请说明理由.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,对称轴 与 轴交于点 ,直线 ,点 是直线 上方抛物线上一动点,过点 作 ,垂足为 ,交 于点 ,连接 、 、 、 .
(1)抛物线的解析式为 ;
(2)当四边形 面积最大时,求点 的坐标;
(3)在(2)的条件下,连接 ,点 是 轴上一动点,在抛物线上是否存在点 ,使得以 、 、 、 为顶点,以 为一边的四边形是平行四边形.若存在,请直接写出点 的坐标;若不存在,说明理由.
如图,在平面直角坐标系中,抛物线 交 轴于 、 两点,交 轴于点 , , ,直线 过点 ,交 轴于点 ,交抛物线于点 ,且满足 .
(1)求抛物线的解析式;
(2)动点 从点 出发,沿 轴正方向以每秒2个单位长度的速度向点 运动,动点 从点 出发,沿射线 以每秒1个单位长度的速度向点 运动,当点 运动到点 时,点 也停止运动,设运动时间为 秒.
①在 、 的运动过程中,是否存在某一时刻 ,使得 与 相似,若存在,求出 的值;若不存在,请说明理由.
②在 、 的运动过程中,是否存在某一时刻 ,使得 与 的面积之和最大?若存在,求出 的值;若不存在,请说明理由.
综合与探究
如图1所示,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过点 , .
(1)求抛物线的解析式
(2)点 在抛物线的对称轴上,求 的最小值;
(3)如图2所示, 是线段 的上一个动点,过点 垂直于 轴的直线与直线 和抛物线分别交于点 、 .
①若以 , , 为顶点的三角形与 相似,则 的面积为 ;
②若点 恰好是线段 的中点,点 是直线 上一个动点,在坐标平面内是否存在点 ,使以点 , , , 为顶点的四边形是菱形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
注:二次函数 的顶点坐标为 ,