如图,抛物线 y = x 2 + bx + c 的对称轴为直线 x = 2 ,抛物线与 x 轴交于点 A 和点 B ,与 y 轴交于点 C ,且点 A 的坐标为 ( − 1 , 0 ) .
(1)求抛物线的函数表达式;
(2)将抛物线 y = x 2 + bx + c 图象 x 轴下方部分沿 x 轴向上翻折,保留抛物线在 x 轴上的点和 x 轴上方图象,得到的新图象与直线 y = t 恒有四个交点,从左到右四个交点依次记为 D , E , F , G .当以 EF 为直径的圆过点 Q ( 2 , 1 ) 时,求 t 的值;
(3)在抛物线 y = x 2 + bx + c 上,当 m ⩽ x ⩽ n 时, y 的取值范围是 m ⩽ y ⩽ 7 ,请直接写出 x 的取值范围.
如图①,已知二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1). (1)a= ;(2)若点P在对称轴右侧的二次函数图像上运动,连结OP,交对称轴于点B,点B关于顶点A的对称点为C,连接PC、OC,求证:∠PCB=∠OCB;(3)如图②,将抛物线沿直线y=-x作n次平移(n为正整数,n≤12),顶点分别为A1,A2,…,An,横坐标依次为1,2,…,n,各抛物线的对称轴与x轴的交点分别为D1,D2,…,Dn,以线段AnDn为边向右作正方形AnDnEnFn,是否存在点Fn恰好落在其中的一个抛物线上,若存在,求出所有满足条件的正方形边长;若不存在,请说明理由.
好学的小宸利用电脑作了如下的探索:(1)如图①,将边长为2的等边三角形复制若干个后向右平移,使一条边在同一直线上.则△A2C1B1的面积为 ;(2)求△A4C3B3的面积;(3)在保持图①中各三角形的边OB1=B1B2=B2B3=B3B4=2不变的前提下,小宸又作了如下探究:将顶点A1、A2、A3、A4向上平移至同一高度(如图②),若OA4=OB4,试判断以OA2、OA3和OA4为三边能否构成三角形?若能,请判断这个三角形的形状;若不能,请说明理由.
如图,点O在边长为8的正方形ABCD的AD边上运动(4<C)A<8),以O为圆心,OA长为半径作圆,交CD于点E,连接OE、AE,过点E作直线EF交BC于 点F,且∠CEF=2∠DAE.(1)求证:直线EF为⊙O的切线;(2)在点O的运动过程中,设DE=x,解决下列问题:①求OD·CF的最大值,并求此时半径的长;②试猜想并证明△CEF的周长为定值.
如图,在矩形ABCD中,AB=4,BC=3,将矩形绕点C按顺时针方向旋转,使点B落在线段AC上,得矩形CEFG,边CD与EF交于点H,连接DG.(1)CH= .(2)求DG的长.
如图,矩形OABC放置在第一象限内,已知A(3,0),∠AOB=30°,反比例函数y=的图像交BC、AB于点D、E.(1)若点D为BC的中点,试证明点E为AB的中点;(2)若点A关于直线OB的对称点为F,试探究:点F是否落在该双曲线上?