如图,抛物线 y = x 2 + bx + c 的对称轴为直线 x = 2 ,抛物线与 x 轴交于点 A 和点 B ,与 y 轴交于点 C ,且点 A 的坐标为 ( − 1 , 0 ) .
(1)求抛物线的函数表达式;
(2)将抛物线 y = x 2 + bx + c 图象 x 轴下方部分沿 x 轴向上翻折,保留抛物线在 x 轴上的点和 x 轴上方图象,得到的新图象与直线 y = t 恒有四个交点,从左到右四个交点依次记为 D , E , F , G .当以 EF 为直径的圆过点 Q ( 2 , 1 ) 时,求 t 的值;
(3)在抛物线 y = x 2 + bx + c 上,当 m ⩽ x ⩽ n 时, y 的取值范围是 m ⩽ y ⩽ 7 ,请直接写出 x 的取值范围.
(·湖北黄冈,17题,分)(6 分)已知:如图,在四边形ABCD 中,AB ∥ CD,E,F 为对角线AC 上两点,且AE=CF,DF∥BE.求证:四边形ABCD 为平行四边形.
(·湖北衡阳,26题,分)(本小题满分8分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.
(·湖北鄂州,18题,8分)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数
(·湖南株洲)如图,在ABC中,∠C=90º,BD是ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形, (1)求证:点O在∠BAC的平分线上; (2)若AC=5,BC=12,求OE的长
(·湖南长沙)如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F。(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度。