如图,已知两直线 l 1 , l 2 分别经过点 A ( 1 , 0 ) ,点 B ( − 3 , 0 ) ,且两条直线相交于 y 轴的正半轴上的点 C ,当点 C 的坐标为 ( 0 , 3 ) 时,恰好有 l 1 ⊥ l 2 ,经过点 A 、 B 、 C 的抛物线的对称轴与 l 1 、 l 2 、 x 轴分别交于点 G 、 E 、 F , D 为抛物线的顶点.
(1)求抛物线的函数解析式;
(2)试说明 DG 与 DE 的数量关系?并说明理由;
(3)若直线 l 2 绕点 C 旋转时,与抛物线的另一个交点为 M ,当 ΔMCG 为等腰三角形时,请直接写出点 M 的坐标.
如图,A、C两乡镇到水渠边的距离分别为AB=2km,CD=4km,且BD=8km。 (1)在水渠边上要建一个水电站P,使得PA+PC最小,请在图中画出P的位置(保留作图痕迹),不必说明理由。 (2)求出PA+PC最小值。
已知:如图,∠ACB=∠ADB=90°,AC=AD,E是AB上任意一点。 (1)BC与BD相等吗?试说明理由。 (2)CE=DE吗?为什么?
(1)计算: (2)求的值:
为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9. (1)最后一名老师送到目的时,小王距出租车出发点的距离是多少? (2)若汽车耗油量为0.4升/千米,这天上午小王的汽车共耗油多少升?
已知a、b互为相反数,c、d互为倒数, x的绝对值为2,求x2-(a+b-cd)x+(a+b)2007-(cd)2008.