如图,已知两直线 l 1 , l 2 分别经过点 A ( 1 , 0 ) ,点 B ( − 3 , 0 ) ,且两条直线相交于 y 轴的正半轴上的点 C ,当点 C 的坐标为 ( 0 , 3 ) 时,恰好有 l 1 ⊥ l 2 ,经过点 A 、 B 、 C 的抛物线的对称轴与 l 1 、 l 2 、 x 轴分别交于点 G 、 E 、 F , D 为抛物线的顶点.
(1)求抛物线的函数解析式;
(2)试说明 DG 与 DE 的数量关系?并说明理由;
(3)若直线 l 2 绕点 C 旋转时,与抛物线的另一个交点为 M ,当 ΔMCG 为等腰三角形时,请直接写出点 M 的坐标.
如图,已知抛物线 y = a x 2 + bx + c 经过点 A ( − 3 , 0 ) 、 B ( 9 , 0 ) 和 C ( 0 , 4 ) , CD 垂直于 y 轴,交抛物线于点 D , DE 垂直于 x 轴,垂足为 E ,直线 l 是该抛物线的对称轴,点 F 是抛物线的顶点.
(1)求出该二次函数的表达式及点 D 的坐标;
(2)若 Rt Δ AOC 沿 x 轴向右平移,使其直角边 OC 与对称轴 l 重合,再沿对称轴 l 向上平移到点 C 与点 F 重合,得到 Rt △ A 1 O 1 F ,求此时 Rt △ A 1 O 1 F 与矩形 OCDE 重叠部分图形的面积;
(3)若 Rt Δ AOC 沿 x 轴向右平移 t 个单位长度 ( 0 < t ⩽ 6 ) 得到 Rt △ A 2 O 2 C 2 , Rt △ A 2 O 2 C 2 与 Rt Δ OED 重叠部分图形的面积记为 S ,求 S 与 t 之间的函数表达式,并写出自变量 t 的取值范围.
如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形 ABCD 中, AB = AD , CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形 ABCD 的对角线 AC 、 BD 交于点 O , AC ⊥ BD .试证明: A B 2 + C D 2 = A D 2 + B C 2 ;
(3)解决问题:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连接 CE 、 BG 、 GE .已知 AC = 4 , AB = 5 ,求 GE 的长.
如图, AB 、 AC 分别是 ⊙ O 的直径和弦, OD ⊥ AC 于点 D .过点 A 作 ⊙ O 的切线与 OD 的延长线交于点 P , PC 、 AB 的延长线交于点 F .
(1)求证: PC 是 ⊙ O 的切线;
(2)若 ∠ ABC = 60 ° , AB = 10 ,求线段 CF 的长.
天水某景区商店销售一种纪念品,这种商品的成本价10元 / 件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元 / 件,市场调查发现,该商品每天的销售量 y (件 ) 与销售价 x (元 / 件)之间的函数关系如图所示.
(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围;
(2)求每天的销售利润 W (元 ) 与销售价 x (元 / 件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
某地的一座人行天桥如图所示,天桥高为6米,坡面 BC 的坡度为 1 : 1 ,文化墙 PM 在天桥底部正前方8米处 ( PB 的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为 1 : 3 .(参考数据: 2 ≈ 1 . 414 , 3 ≈ 1 . 732 )
(1)若新坡面坡角为 α ,求坡角 α 度数;
(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙 PM 是否需要拆除?请说明理由.