如图,直线 y = − x + 4 与 x 轴交于点 B ,与 y 轴交于点 C ,抛物线 y = − x 2 + bx + c 经过 B , C 两点,与 x 轴另一交点为 A .点 P 以每秒 2 个单位长度的速度在线段 BC 上由点 B 向点 C 运动(点 P 不与点 B 和点 C 重合),设运动时间为 t 秒,过点 P 作 x 轴垂线交 x 轴于点 E ,交抛物线于点 M .
(1)求抛物线的解析式;
(2)如图①,过点 P 作 y 轴垂线交 y 轴于点 N ,连接 MN 交 BC 于点 Q ,当 MQ NQ = 1 2 时,求 t 的值;
(3)如图②,连接 AM 交 BC 于点 D ,当 ΔPDM 是等腰三角形时,直接写出 t 的值.
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=,过点D作DE垂直OA的延长线且交于点E.(1)求证:△OAB∽△EDA; (2)当为何值时,△OAB与△EDA全等?请说明理由;并求出此时B、D两点的距离.
甲、乙、丙、丁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率; (2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率。
已知,如图,在R t△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D. (1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由; (2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和)
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染多少台电脑?
如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.