在平面直角坐标系 xOy 中,已知抛物线的顶点坐标为 ( 2 , 0 ) ,且经过点 ( 4 , 1 ) ,如图,直线 y = 1 4 x 与抛物线交于 A 、 B 两点,直线 l 为 y = − 1 .
(1)求抛物线的解析式;
(2)在 l 上是否存在一点 P ,使 PA + B 取得最小值?若存在,求出点 P 的坐标;若不存在,请说明理由.
(3)知 F ( x 0 , y 0 ) 为平面内一定点, M ( m , n ) 为抛物线上一动点,且点 M 到直线 l 的距离与点 M 到点 F 的距离总是相等,求定点 F 的坐标.
如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(-3,2),BC⊥y轴于点C,且OC=6BC. (1)求双曲线和直线的解析式; (2)直接写出不等式的解集.
已知反比例函数(k为常数,k≠1). (1)其图象与正比例函数y=x的图象的一个交点为P.若点P的纵坐标是2,求k的值; (2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围; (3)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1),B(x2,y2),当y1>y2时,试比较x1与x2的大小.
已知A(0,-6),B(-3,0),C(m,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式,并在图中画出其图象.(要求标出必要的点,可不写画法)
已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1.求时,y的值.
已知y是x的反比例函数,且x=2时,y=-3,确定此函数的解析式,并求当y=-8时,自变量x的值.