如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点.(1)求点的坐标;(2)若抛物线向上平移后恰好经过点,求平移后抛物线的解析式.
阅读材料:如图(1),△ABC的周长为L,内切圆O的半径为r,连结OA,OB,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.∵S△ABC =S△OAB +S△OBC +S△OCA又∵S△OAB =AB·r,S△OBC =BC·r,S△OCA =AC·r∴S△ABC =AB·r+BC·r+CA·r=L·r(可作为三角形内切圆半径公式)(1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径;(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(2)且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…an,合理猜想其内切圆半径公式(不需说明理由).
如图,已知△ABC的内切圆⊙O分别和边BC,AC,AB切于D,E,F,如果AF=2,BD=7,CE=4.(1)求△ABC的三边长;(2)如果P为上一点,过P作⊙O的切线,交AB于M,交BC于N,求△BMN的周长.
如图,已知正三角形ABC的边长为2a.(1)求它的内切圆与外接圆组成的圆环的面积;(2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积;(3)将条件中的“正三角形”改为“正方形”“正六边形”,你能得出怎样的结论?(4)已知正n边形的边长为2a,请写出它的内切圆与外接圆组成的圆环面积.
如图,△ABC中,∠A=m°.(1)如图(1),当O是△ABC的内心时,求∠BOC的度数;(2)如图(2),当O是△ABC的外心时,求∠BOC的度数;(3)如图(3),当O是高线BD与CE的交点时,求∠BOC的度数.
如图,⊙I切△ABC的边分别为D,E,F,∠B=70°,∠C=60°,M是 上的动点(与D,E不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.