如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过点B。(1)若a=-l,且抛物线与矩形有且只有三个交点B、D、E,求△ BDE的面积S的最大值;(2)若抛物线与矩形有且只有三个交点B、M、N,线段MN的垂直平分线l过点C,交线段OA于点F。当AF=1时,求抛物线的解析式。
解不等式组: 2 x − 4 ⩽ 0 3 − x 2 < x ,并把解集在数轴上表示出来.
某校300名学生参加植树活动,要求每人植树 2 − 5 棵,活动结束后随机抽查了20名学生每人的植树量,并分为四类: A 类2棵、 B 类3棵、 C 类4棵、 D 类5棵,将各类的人数绘制成不完整的条形统计图(如图所示),回答下列问题:
(1) D 类学生有多少人?
(2)估计这300名学生共植树多少棵?
如图,方格图中每个小正方形的边长为1,点 A 、 B 、 C 都是格点.
(1)画出 ΔABC 关于直线 BM 对称的△ A 1 B 1 C 1 ;
(2)写出 A A 1 的长度.
如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D 从 O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE .
(1)求证: ΔCDE 是等边三角形;
(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;
(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D 、 E 、 B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.
如图,已知抛物线 y = a x 2 + 8 5 x + c 与 x 轴交于 A , B 两点,与 y 轴交于点 C ,且 A ( 2 , 0 ) , C ( 0 , − 4 ) ,直线 l : y = − 1 2 x − 4 与 x 轴交于点 D ,点 P 是抛物线 y = a x 2 + 8 5 x + c 上的一动点,过点 P 作 PE ⊥ x 轴,垂足为 E ,交直线 l 于点 F .
(1)试求该抛物线表达式;
(2)如图(1),当点 P 在第三象限,四边形 PCOF 是平行四边形,求 P 点的坐标;
(3)如图(2),过点 P 作 PH ⊥ y 轴,垂足为 H ,连接 AC .
①求证: ΔACD 是直角三角形;
②试问当 P 点横坐标为何值时,使得以点 P 、 C 、 H 为顶点的三角形与 ΔACD 相似?