如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过点B。(1)若a=-l,且抛物线与矩形有且只有三个交点B、D、E,求△ BDE的面积S的最大值;(2)若抛物线与矩形有且只有三个交点B、M、N,线段MN的垂直平分线l过点C,交线段OA于点F。当AF=1时,求抛物线的解析式。
如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)B(2,-1)C(3,1). (1)请在网格图形中画出平面直角坐标系; (2)以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′; (3)写出△A′B′C′各顶点的坐标:A′____,B′____,C′ ___;
(1)(用公式法) (2) 3x2-4x-6=0(配方法解) (3)(用合适的方法) (4)(用合适的方法)
如图,在其中△ABC中,点E、D、F分别在变AB、BC、CA上,且DE∥CA,DF∥BA。下列说法中错误的是( ) A、四边形AEDF是平行四边形 B、如果∠BAC=90°,那么四边形AEDF是矩形 C、如果AD平分∠BAC,那么四边形AEDF是菱形 D、如果AD⊥BC且AB=AC,那么四边形AEDF是正方形
先阅读理解下面的例题,再按要求解答下列问题: 例题 :求代数式的最小值. 解: 的最小值是. (1)代数式的最小值 ; (2)求代数式的最小值; (3)某居民小区要在一块一边靠墙(墙长)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为的栅栏围成.如图,设(),请问:当取何值时,花园的面积最大?最大面积是多少?
图1是一个长为2,宽为2的长方形,沿图中虚线剪开,可分成四块小长方形.(1)求出图1的长方形面积;(2)将四块小长方形拼成一个图2的正方形.利用阴影部分面积的不同表示方法,直接写出代数式()2、()2、之间的等量关系;(3)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含、的代数式表示).