如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0, 3)。(1)求抛物线的解析式;(2)若点P为抛物线在第二象限上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。
(本小题满分8分) “中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下: 请根据上表提供的信息,解答下列问题: (1)表中的x的值为,y的值为; (2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.
如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8cm,CD=2cm.(本小题满分8分) (1)求作此残片所在的圆(尺规作图,不写作法,保留作图痕迹); (2)求出(1)中所作圆的半径.
(本小题满分12分 )已知抛物线y=ax2+bx+1经过点A(1,3)和点B(2,1)。 (1)求此抛物线解析式; (2)点C、D分别是x轴和y轴上的动点,求四边形ABCD周长的最小值; (3)①在抛物线AB段上存在一点E使△ABE的面积最大,求E点的坐标 ②请直接写出以A、 B和在满足①的条件中的E点为顶点的平行四边形的第四个顶点P的坐标。
(本小题满分12分 )如图①、②、③,正三角形ABC、正方形ABCD、正五边形ABCDE分别是⊙O的内接三角形、内接四边形、内接五边形,点M、N分别从点B、C开始,以相同的速度在⊙O上逆时针运动. (1)求图①中∠APN的度数(写出解题过程); (2)写出图②中∠APN的度数和图 ③中∠APN的度数 ( 3)试探索∠APN的度数与正多边形边数n的关系(直接写答案)
(本小题满分10分 )在端午节前夕三位同学到某超市调研一种进价为2元的粽子的售销情况,请跟据小丽提供的信息,解答小华和小明提出的问题 小丽:每个定价3元,每天能卖出500个,而且,这种粽子每上涨0.1元,其售销量将减小10个 小华:照你所说,如果实现每天800元的售销利润,那该如何定价?莫忘了物价局规定售价不能超过进价的240%哟 小明:800元售销利润是不是最多的呢?如果不是,那该如何定价,才会使每天的利润最大?. (1)小华的问题解答: (2)小明的问题解答: