如图,已知抛物线 y = a x 2 + bx ( a ≠ 0 ) 过点 A ( 3 , − 3 ) 和点 B ( 3 3 , 0 ) .过点 A 作直线 AC / / x 轴,交 y 轴于点 C .
(1)求抛物线的解析式;
(2)在抛物线上取一点 P ,过点 P 作直线 AC 的垂线,垂足为 D .连接 OA ,使得以 A , D , P 为顶点的三角形与 ΔAOC 相似,求出对应点 P 的坐标;
(3)抛物线上是否存在点 Q ,使得 S ΔAOC = 1 3 S ΔAOQ ?若存在,求出点 Q 的坐标;若不存在,请说明理由.
先化简,再求值:,其中a= -1
如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动. (1)求该二次函数的解析式及点C的坐标; (2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请写出E点坐标;. (3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.
如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE. (1)求证:△DEC≌△EDA; (2)求DF的值; (3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,求当线段PE的长为何值时,矩形PQMN的面积最大?
如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF. (1)若⊙O的半径为3,∠DAB=120°,求劣弧的长; (2)求证:BF=BD; (3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
2014年5月,我市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,绘制了不完整的两种统计图. 根据图中提供的信息,回答下列问题: (1)参加演讲比赛的学生共有人,并把条形图补充完整; (2)扇形统计图中,m=,n=;C等级对应扇形的圆心角为度; (3)学校欲从获A等级的学生中随机选取2人,参加市举办的演讲比赛,请利用列表法或树形图法,求获A等级的小明参加市比赛的概率.