初中数学

已知二次函数 y = 2 ( x 1 ) ( x m 3 ) ( m 为常数).

(1)求证:不论 m 为何值,该函数的图象与 x 轴总有公共点;

(2)当 m 取什么值时,该函数的图象与 y 轴的交点在 x 轴的上方?

来源:2018年江苏省南京市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知是常数,抛物线的对称轴是轴,并且与轴有两个交点.

(1)求的值;

(2)若点在物线上,且轴的距离是2,求点的坐标.

来源:2019年云南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

已知抛物线轴有两个不同的交点.

(1)求的取值范围;

(2)若抛物线经过点和点,试比较的大小,并说明理由.

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

在平面直角坐标系中(如图),已知抛物线,其顶点为

(1)写出这条抛物线的开口方向、顶点的坐标,并说明它的变化情况;

(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.

①试求抛物线的“不动点”的坐标;

②平移抛物线,使所得新抛物线的顶点是该抛物线的“不动点”,其对称轴与轴交于点,且四边形是梯形,求新抛物线的表达式.

来源:2019年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx ( a 0 ) x 轴正半轴于点 A ,直线 y = 2 x 经过抛物线的顶点 M .已知该抛物线的对称轴为直线 x = 2 ,交 x 轴于点 B

(1)求 a b 的值.

(2) P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 OP BP .设点 P 的横坐标为 m ΔOBP 的面积为 S ,记 K = S m .求 K 关于 m 的函数表达式及 K 的范围.

来源:2018年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知函数为常数)的图象经过点

(1)求满足的关系式;

(2)设该函数图象的顶点坐标是,当的值变化时,求关于的函数解析式;

(3)若该函数的图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.

来源:2019年浙江省台州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

在平面直角坐标系中(如图).已知抛物线经过点和点,顶点为,点在其对称轴上且位于点下方,将线段绕点按顺时针方向旋转,点落在抛物线上的点处.

(1)求这条抛物线的表达式;

(2)求线段的长;

(3)将抛物线平移,使其顶点移到原点的位置,这时点落在点的位置,如果点轴上,且以为顶点的四边形面积为8,求点的坐标.

来源:2018年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = ( x a ) ( x 3 ) ( 0 < a < 3 ) 的图象与 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 D ,过其顶点 C 作直线 CP x 轴,垂足为点 P ,连接 AD BC

(1)求点 A B D 的坐标;

(2)若 ΔAOD ΔBPC 相似,求 a 的值;

(3)点 D O C B 能否在同一个圆上?若能,求出 a 的值;若不能,请说明理由.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

一次函数与二次函数的图象的一个交点坐标为,另一个交点是该二次函数图象的顶点.

(1)求的值;

(2)过点且垂直于轴的直线与二次函数的图象相交于两点,点为坐标原点,记,求关于的函数解析式,并求的最小值.

来源:2019年安徽省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

某班"数学兴趣小组"对函数 y = x 2 - 2 | x | 的图象和性质进行了探究,探究过程如下,请补充完整.

(1)自变量 x 的取值范围是全体实数, x y 的几组对应值列表如下:

x

- 3

- 5 2

- 2

- 1

0

1

2

5 2

3

y

3

5 4

m

- 1

0

- 1

0

5 4

3

其中, m =    

(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.

(3)观察函数图象,写出两条函数的性质.

(4)进一步探究函数图象发现:

①函数图象与 x 轴有    个交点,所以对应的方程 x 2 - 2 | x | = 0    个实数根;

②方程 x 2 - 2 | x | = 2    个实数根;

③关于 x 的方程 x 2 - 2 | x | = a 有4个实数根时, a 的取值范围是    

来源:2016年河南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

若抛物线 L y a x 2 + bx + c abc是常数, abc 0 )与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.

(1)若直线 y mx + 1 与抛物线 y x 2 - 2 x + n 具有“一带一路”关系,求mn的值;

(2)若某“路线”L的顶点在反比例函数 y 6 x 的图象上,它的“带线”l的解析式为 y 2 x - 4 ,求此“路线”L的解析式;

(3)当常数k满足 1 2 k 2 时,求抛物线 L y a x 2 + 3 k 2 2 k + 1 x + k 的“带线”lx轴,y轴所围成的三角形面积的取值范围.

来源:2016年湖南省长沙市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图1,抛物线的顶点 A 的坐标为 ( 1 , 4 ) ,抛物线与 x 轴相交于 B C 两点,与 y 轴交于点 E ( 0 , 3 )

(1)求抛物线的表达式;

(2)已知点 F ( 0 , 3 ) ,在抛物线的对称轴上是否存在一点 G ,使得 EG + FG 最小,如果存在,求出点 G 的坐标;如果不存在,请说明理由.

(3)如图2,连接 AB ,若点 P 是线段 OE 上的一动点,过点 P 作线段 AB 的垂线,分别与线段 AB 、抛物线相交于点 M N (点 M N 都在抛物线对称轴的右侧),当 MN 最大时,求 ΔPON 的面积.

来源:2018年湖南省永州市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c x 轴交于点 A ( 3 , 0 ) 、点 B ( 1 , 0 ) ,与 y 轴交于点 C

(1)求拋物线的解析式;

(2)过点 D ( 0 , 3 ) 作直线 MN / / x 轴,点 P 在直线 MN 上且 S ΔPAC = S ΔDBC ,直接写出点 P 的坐标.

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,设二次函数 y 1 = ( x + a ) ( x a 1 ) ,其中 a 0

(1)若函数 y 1 的图象经过点 ( 1 , 2 ) ,求函数 y 1 的表达式;

(2)若一次函数 y 2 = ax + b 的图象与 y 1 的图象经过 x 轴上同一点,探究实数 a b 满足的关系式;

(3)已知点 P ( x 0 m ) Q ( 1 , n ) 在函数 y 1 的图象上,若 m < n ,求 x 0 的取值范围.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 8 ( a 0 ) 经过点 ( - 2 , 0 )

(1)求抛物线的函数表达式和顶点坐标.

(2)直线 l 交抛物线于点 A ( - 4 , m ) B ( n , 7 ) n 为正数.若点 P 在抛物线上且在直线 l 下方(不与点 A B 重合),分别求出点 P 横坐标与纵坐标的取值范围.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题