在平面直角坐标系xOy中(如图),已知抛物线y=x2-2x,其顶点为A.
(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;
(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.
①试求抛物线y=x2-2x的“不动点”的坐标;
②平移抛物线y=x2-2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.
如图所示,AB//CD,∠ACD=. ⑴用直尺和圆规作∠C的平分线CE,交AB于E,并在CD上取一点F,使AC=AF,再连接AF,交CE于K;(要求保留作图痕迹,不必写出作法) ⑵依据现有条件,直接写出图中所有相似的三角形﹒(图中不再增加字母和线段,不要求证明)
如图,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF. 求证:(1)AE=BF;(2)AE⊥BF.
已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2. (1)求k的取值范围; (2)若|x1+x2|=x1x2﹣1,求k的值.
先化简、再求值:,其中a=-3.
如图(1),由三角形的内角和或外角和可知:∠ABC=∠A+∠C+∠O 在图(2)中,直接利用上述的结论探究: ①AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数 ②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由。