如图,在平面直角坐标系中,二次函数 y = ( x − a ) ( x − 3 ) ( 0 < a < 3 ) 的图象与 x 轴交于点 A 、 B (点 A 在点 B 的左侧),与 y 轴交于点 D ,过其顶点 C 作直线 CP ⊥ x 轴,垂足为点 P ,连接 AD 、 BC .
(1)求点 A 、 B 、 D 的坐标;
(2)若 ΔAOD 与 ΔBPC 相似,求 a 的值;
(3)点 D 、 O 、 C 、 B 能否在同一个圆上?若能,求出 a 的值;若不能,请说明理由.
如图,正比例函数 y = 2 x 的图象与反比例函数 y = k x 的图象交于 A 、 B 两点,过点 A 作 A C 垂直 x 轴于点 C ,连结 B C .若 △ A B C 的面积为 2 . (1)求k的值; (2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
如图1,四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=. (1)求CD边的长; (2)如图2,将直线CD边沿箭头方向平移,交DA于点P,交CB于点Q (点Q运动到点B停止),设DP=x,四边形PQCD的面积为,求与的函数关系式,并求出自变量的取值范围.
“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表: (1)小张如何进货,使进货款恰好为1300元? (2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.
某班开展安全知识竞赛活动,班长将所有同学的成绩分成四类,并制作了如下的统计图表: 根据图表信息,回答下列问题: (1)该班共有学生人;表中a=; (2)将丁类的五名学生分别记为A、B、C、D、E,现从中随机挑选两名学生参加学校的决赛,请借助树状图、列表或其他方式求B一定能参加决赛的概率.
如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E. (1)求证:△DCE≌△BFE; (2)若CD=2,∠ADB=30°,求BE的长.