如图1,抛物线的顶点 A 的坐标为 ( 1 , 4 ) ,抛物线与 x 轴相交于 B 、 C 两点,与 y 轴交于点 E ( 0 , 3 ) .
(1)求抛物线的表达式;
(2)已知点 F ( 0 , − 3 ) ,在抛物线的对称轴上是否存在一点 G ,使得 EG + FG 最小,如果存在,求出点 G 的坐标;如果不存在,请说明理由.
(3)如图2,连接 AB ,若点 P 是线段 OE 上的一动点,过点 P 作线段 AB 的垂线,分别与线段 AB 、抛物线相交于点 M 、 N (点 M 、 N 都在抛物线对称轴的右侧),当 MN 最大时,求 ΔPON 的面积.
如图所示,一幢楼房AB背后有一台阶CD,台阶每层高米,且AC=米,设太阳光线与水平地面的夹角为.当时,测得楼房在地面上的影长AE=米,现有一只小猫睡在台阶的MN这层上晒太阳.(取) (1)求楼房的高度约为多少米? (2)过了一会儿,当时,问小猫能否还晒到太阳?请说明理由.
已知:如图,AB∥CD,E是AB的中点,CE=DE. 求证:(1)∠AEC=∠BED;(2)AC=BD.
如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)
如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)
如图,△ABC中,CD是边AB上的高,且. (1)求证:△ACD∽△CBD; (2)求∠ACB的大小.